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The Thomas–Reiche–Kuhn sum rule and the rigid rotator
E. Hadjimichael
Department of Physics, Fairfield University, Fairfield, Connecticut 06430

William Curriea) and S. Fallieros
Department of Physics, Brown University, Providence, Rhode Island 02912

~Received 7 November 1995; accepted 25 September 1996!

It is shown that the Thomas–Reiche–Kuhn sum rule, associated with the photoabsorption cross
section from quantum systems, appears to be violated in the case of the quantized rigid rotator. The
origin of the apparent violation is investigated, and its resolution is presented on the basis of a
related system, i.e., a particle in a sphericald-function potential whose energy spectrum approaches
that of the rigid rotator when the strength of the potential becomes large.
© 1997 American Association of Physics Teachers.

I. INTRODUCTION

It is well known that for relatively low energies, the inter-
action of electromagnetic radiation with a microscopic sys-
tem is dominated by electric dipole (E1) transitions. The
matrix element for theE1 amplitude,

E15^C f uD• êuC i&, ~I1!

is expressed in terms of the dipole operator for the charged
system, i.e.,

D̂5(
j
ej r̄d~ r̄2 r̄ j !, ~I2!

whereê is the polarization of the external electric field in an
arbitrary direction, andej is the electric charge of thej th
particle. There is a well known sum rule that is associated
with the E1 amplitude, the Thomas–Reiche–Kuhn sum
rule,1 which we proceed to derive.
Starting from the fundamental commutation relation

2
i

\
@ê* • r̄ ,ê• p̄#51, ~I3!

which is intimately related to the uncertainty principle, and
the identity

@Ĥ,ê• r̄ #52 i
\

m
ê• p̄, ~I4!

where Ĥ is the Hamiltonian of the system under consider-
ation, assumed to contain no velocity-dependent forces, we
obtain

^C0u
m

\2 @ ê* • r̂ ,@Ĥ,ê• r̂ ##uC0&51, ~I5!

where C0 represents the ground state of the system, and
ê* • ê51. We note that for the case of linear polarizationê is
a real unit vector, i.e.,ê*5e, and Eq.~I5! can be expressed
in Cartesian coordinates; for circular polarization,ê*Þê,
and Eq.~I5! would contain spherical components of the po-
sition operatorr̂ , i.e., those proportional torYl ,m(u,f).
By expanding the commutator in Eq.~I5! and using the

closure relation for the complete set of eigenstates of the
Hermitian operatorĤ, i.e.,

(
n

Cn* ~ r̄ !Cn~ r̄ !5d~ r̄2 r̄ 8!, ~I6!

we finally obtain the result

(
n

f n05
2m

\2 (
n

~En2E0!u^Cnu ê• r̄ uC0&u251, ~I7!
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which is the celebrated Thomas–Reiche–Kuhn~TRK! sum
rule.1 The quantities f n0 are the well-known ‘‘oscillator
strengths,’’ so called because of their appearance in the am-
plitude for scattering of light from a harmonic oscillator2 in
the long wavelength~electric dipole! approximation. In Eq.
~I7! we have restricted ourselves to the case of a single par-
ticle of massm bound in a potential. For a two-body system,
r would be the separation distance between the two particles
andm would be replaced by the reduced massm; for a many-
body system,r would be replaced by a sum over particles.
As the derivation of Eq.~I7! indicates, the TRK sum rule

is a direct consequence of the fundamental laws of quantum
mechanics. In addition, it implies some important results
concerning directly measurable quantities, such as the scat-
tering amplitude and the cross section for photon absorption
by a bound system. Before proceeding further we present
here examples of such results.
It can be readily shown2 that the integrated cross section

for E1 photon absorption is

E
0

`

sabs
E1~E!dE52p2e2

\

mc (
n

f n052p2e2
\

mc
, ~I8!

where the TRK sum rule was used in the last step.sabs
E1(E) is

the cross section for absorption of photons of energyE by a
bound particle of chargee in the electric dipole (E1) ap-
proximation. Equation~I8! shows that the integrated cross
section has a finite upper bound independent of the nature of
the binding forces.2–4

Furthermore, we find that the amplitude for forward scat-
tering of photons of energyE from a bound system, in the
E1 approximation, is

f E1~E!52E2
e2

\c2 (
n

u^Cnu ê• r̄ uC0&u2

3
2En0

~E2En0!
21 ih

, ~I9!

with En05En2E0 andh→0. It has a high energy limit

f E1~E! →
E→`

2
e2

mc2 (
n

f n052
e2

mc2
~I10!

Again, the TRK sum rule was applied in the last step. Equa-
tion ~I10! indicates that at high energies, this scattering am-
plitude becomes identical to the Thomson amplitude describ-
ing the scattering of photons from a free particle with the
same charge and mass.5

Equations~I8! and ~I10! appear in many textbooks, yet a
comment is in order at this point with regard to the compat-
ibility between the long wavelength approximation which
implies a low energy regime, and the high energy limit em-
ployed in these equations. It is important to remember that
both equations are nonrelativistic. In this context, ‘‘high en-
ergy’’ implies that the energy of the photon is large com-
pared to typical excitation or ionization energies, but still
small compared to the mass of the bound particle. An atomic
system is typical of this situation where the high-energy limit
is still compatible with the nonrelativistic approximation and
the dominance of theE1 transition.
In the following we examine the saturation of the TRK

sum rule, Eq.~I7!, and identify the energy region which con-
tains most of the significant oscillator strength. Thus, in Sec.
II we present three typical examples which illustrate the satu-
ration of the sum rule. In Sec. III, we consider the case of the

rigid rotator which exhibits a behavior that appears at first to
be idiosyncratic. In Sec. IV, we achieve an understanding of
this behavior by considering the rigid rotator as the limit of a
regular three-dimensional system composed of a particle
bound in a sphericald-shell potential, thus avoiding the con-
straint of perfect rigidity. The strength of thed-shell poten-
tial that leads to the appearance of an energy spectrum ap-
proaching that of the rigid rotator is investigated. We discuss
briefly some additional sum rules in Sec. V, and we present
concluding remarks in Sec. VI.

II. THREE EXAMPLES

1. The three-dimensional harmonic oscillator
The Schro¨dinger equation for this system is

S pW 2

2m
1
1

2
mv0

2r 2DCn5EnCn ,

and yields energy eigenvaluesEn5(n1 3
2)\v0 , so that

(En2E0)5n\v0 . Furthermore, it is readily shown
2 that the

electric dipole matrix element is, in this case,

^Cnu ê• r̄ uC0&5A \

2mv0
dn,1

so thatf 1051, as seen from Eq.~I7!, and all the other oscil-
lator strengths are equal to zero. The sum rule is saturated by
exactly one single transition to the first excited state of the
harmonic oscillator.
2. The infinite spherical well
For a particle of massm trapped in a spherical, infinitely

deep, potential well of radiusR, i.e.,

V~r !5H 0, 0<r<R

`, r>R
,

there is an infinite number of bound states. The calculation of
the oscillator strengths is straightforward and yields:6

f 1050.9676, f 2050.0254,

f 3050.0048, f 4050.0016,

f 5050.0007,

with all the other oscillator strengths being negligibly small.
The above numbers add up to(n51

5 f n051. That is, the TRK
sum rule is saturated by excitations to the first five states and
is dominated by the contribution of the first excited state.
Note that the indicesn51, 2, 3, 4, 5 inf n0 represent exci-
tations of one angular momentum state, thel51 state, as is
clear from the nature of the electric dipole operator in Eq.
~I7!.
3. The hydrogen atom.
It is shown in Ref. 6 that in the case of an electron–proton

system, the sum of the oscillator strengths from transitions to
bound exited states amounts to

(
bound

f n050.5640,

and the equivalent sum from transitions to unbound states

(
unbound

f n050.4360,

so that the TRK sum rule is indeed(nf n051, and is thus
rigorously satisfied. The contribution from the unbound
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states in the continuum is rather well concentrated at ener-
gies not far from the ionization threshold.

III. THE RIGID ROTATOR

The rigid rotator is envisioned as two particles of massm1
andm2 , rigidly separated at a fixed distancer5R. Hence,
this system is often used as a simplified model describing the
rotational excitations of, say, a diatomic molecule. The re-
duced mass of the system ism5m1m2/(m11m2), and its
moment of inertia isI5mR2. The simplified Hamiltonian
describing the system isHR5L̄2/2mR2 where L2 is the
square of the angular momentum operator which is a purely
angle-dependent operator. The eigenvalues of the system are
the familiar ones

El5
l ~ l11!\2

2mR2 , ~III1 !

wherel50, 1, 2,..., while the eigenfunctions are the spheri-
cal harmonicsYl ,m(u,f). There is only one energy state for
each value of the quantum numberl , and the only degen-
eracy is associated with the azimuthal quantum number
m5 l , l21, l22...2 l . Taking the polarizationê along the
z-axis, we find the dipole matrix element to be

^Yl ,mu ê• r̄ uY0,0&5^Yl ,muR cosuuY0,0&5
R

A3
d l ,1dm,0 .

~III2 !

Evaluating the TRK sum rule, i.e., the left-hand side of Eq.
~I7!, by means of Eqs.~III1 ! and ~III2 ! we find,

(
n

f n05 f 105
2m

\2 S 2\2

2mR2D R2

3
5
2

3
. ~III3 !

in apparent violation of the TRK sum rule, Eq.~I7!. Given
the fundamental nature of this sum rule and its direct relation
to physical processes as illustrated in Sec. I, the missing 1/3
in the result of Eq.~III3 ! deserves further discussion.
To begin to understand the result~III3 !, we review the

derivation of Eq.~I7! using the general Hamiltonian for a
particle of massm,

H5
Pr
2

2m
1

L̄2

2mr2
1V~r !, ~III4 !

wherePr5( r̂ • p̄1 p̄• r̂ )/2 is the radial momentum of the par-
ticle in a spherically symmetric potentialV(r ), andL̄2 is the
square of the angular momentum;r̂5 r̄ /r is the unit vector.
Equation ~III4 ! shows explicitly the two kinetic energy
terms, one associated with the radial motion and the other
with rotational motion. A simple calculation shows that 1/3
of the TRK sum rule originates in thePr

2 term, while the
remaining 2/3 is obtained from the centrifugal termL̄2 even
though the value ofr 2 in the denominator of this term is not
necessarily constant. In comparison to Eq.~III4 !, the Hamil-
tonian for the rigid rotator does not have a term proportional
to the radial momentum; hence the missing 1/3 in the TRK
sum rule, Eq.~III3 !. Understanding the mechanics which
leads to the result~III3 !, however, does not explain the
physical implications of the unaccounted 1/3 of the sum rule
in the case of the rigid rotator. This is an important issue in
view of the intimate relation of this sum rule to physical
processes. It is investigated in the following.

A first glimpse into the question at hand is made possible
by recalling the difference between a classical rotator and a
quantal rotator. In the former case, a rigidly fixed value ofR
implies that there is no radial momentum and thePr

2 term
disappears. In the quantal case, a ‘‘constant’’ value forR
means that the uncertainty inR is much smaller thanR, and
hence the uncertainty in the radial momentum, or the expec-
tation value ofPr

2, becomes very large; indeed, it tends to
infinity in the limit of perfect rigidity. In consequence, radial
excitations occur at very high energies in the quantal case,
approaching infinitely high energies in the limit of perfect
rigidity and zero uncertainty inR. We deduce from this and
the earlier discussion that the apparently missing 1/3 in the
TRK sum rule for the rigid rotator is actually to be found at
infinitely high energies.
At this point we need a specific example which illustrates

these considerations. We present such an example in the fol-
lowing section.

IV. THE SPHERICAL d-SHELL POTENTIAL

Consider a particle of massm in a d-shell potentialV(r )
52gd(r2R). This potential has at most one bound state
for each angular momentum valuel and a continuous spec-
trum above the ‘‘ionization’’ threshold. We shall show nu-
merically that asg, the strength of the potential, increases,
the bound-state energy spectrum will resemble that of a rigid
rotator, and that 1/3 of the strength in the TRK sum rule will
be located at high energies in the continuum, i.e., above the
dissociation threshold. For the perfectly rigid rotator, this
threshold is obviously at infinite energy, and hence the miss-
ing sum rule strength will be located at infinity.
The Schro¨dinger equation for the radial wave function

REl
5 ul(r )/r in the case of the particle in ad-shell potential

takes the form,

d2ul~r !

dr2
2
l ~ l11!

r 2
ul~r !1

2mg

\2 d~r2R!ul~r !

52
2m

\2 Elul~r !. ~IV1!

We shall next obtain solutions for this equation for both
bound states and states in the continuum.

A. Bound states

We write the energy eigenvalueEl in terms of the wave
numberk l ,

El52uEl u52
k l
2\2

2m
~IV2!

and define a quantityl52mg/\2; the radial equation be-
comes

ul9~r !2
l ~ l11!

r 2
ul~r !1ld~r2R!ul~r !5k l

2ul~r !.

~IV3!

For 0,r,R and for r.R, this equation takes the form

ul9~r !2
l ~ l11!

r 2
ul~r !5k l

2ul~r !. ~IV4!
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This is the Bessel equation with solutions

ul~r !

r
5HCl j l~ ik l r !, 0,r,R

Al j l~ ik l r !1Blnl~ ik l r !5Alhl
~1!~ ik l r !, r.R,

~IV5!

where j l , nl , and hl
(1)5 j l1 inl are the spherical Bessel,

Neumann and Hankel~first kind! functions, respectively. For
the case 0,r,R we take into account the fact that the so-
lution must be regular atr50.

Integrating Eq.~IV4! over the range 0,r,`, we obtain a
discontinuity inul8(r ), the first derivative oful(r ), at r5R;
that is

ul8~R
1!2ul8~R

2!52lul~R! ~IV6!

with R65R6e, e→0. Dividing the above equation by
ul(R), and using the continuity of this function atr5R, and
Eq. ~IV5!, we find the result

Al@rhl
~1!~ ik l r !#8@r j l~ ik l r !#2Al@rhl

~1!~ ik l r !#@r j l~ ik l r !#8

Alrhl
~1!~ ik l r !.

U
r5R

52l. ~IV7!

The numerator on the left-hand side of this equation is the
Wronskian of the functionsrhl

(1)( ik l r ) and r j l( ik l r ), and
can be readily shown to be a constant independent of the
value of r . Evaluating it atr50, and substituting into Eq.
~IV7! we find

~k lR!

~lR!
52~k lR!2hl

~1!~ ik lR! j l~ ik lR!. ~IV8!

We will solve this equation for the dimensionless product
k lR which defines the bound state energyEl , Eq. ~IV2!, in
terms of the dimensionless variabley5lR.

1. Normalization and energy eigenvalues

The constantsCl andAl in the wave function, Eq.~IV5!
are determined by means of the wave function normalization
condition and the continuity condition atr5R. We find the
result

Cl5clk l
3/2,

~IV9!Al5alk l
3/2.

The values ofcl and al for the angular momentum states
l50 and l51, and for a range of values ofy5lR, indica-
tive of potential strength, are shown in Table I.
Before we solve Eq.~IV8!, it is useful to use it to derive

the condition that an angular momentum state of quantum
number l be bound, for a given value oflR. Clearly, this
condition is satisfied fork lR→0. Employing the analytic
expressions for spherical Bessel functions near the origin, we
find that statesl are bound provided

2l11<lR. ~IV10!

There is only one bound state for every value ofl . With Eq.
~IV10! in mind, we solve Eq.~IV8! numerically for a range
of values oflR. We show the results fork lR, 0< l<4, in
Table II.

2. Comparison of the relative distribution of energy states
and of root-mean-square radii of thed-function
potential and the rigid rotator

Writing the energyEl of the rigid rotator in terms of a
wave numberk l , and using Eq.~III1 !, we find

1

2

@~k l11R!22~k lR!2#

l11
51 for the rigid rotator.

~IV11!

This gives a measure of the energy gap between successive
angular momentum states in the case of the rigid rotator. At
the same time, using the results for thed-function potential
in Table II, we evaluate the left-hand side of Eq.~IV11! for
this system also, and we find that aslR grows larger, its
value approaches 1, i.e., the value in Eq.~IV11!, rather
quickly. Indeed, the two energy distributions, for the rigid
rotator and for thed-function potential, become essentially
identical whenlR525. We show the results for thed-shell
potential in Table III.
Additional information regarding how thed-function po-

tential system approaches the rigid rotator is given by the
values of the rms radius for the ground state in the former
case, compared to the radiusR of the rigid rotator. Using the
ground state wave function, Eqs.~IV5! and~IV9! and Table
I, for l50, we evaluate both the rms radiusA^r 2&, and the

Table I. Normalization constants, Eqs.~IV5! and~IV9!, for the bound states
l50 andl51, for a range of values oflR.

lR c0 a0 c1 a1

3.2 20.484 66 4.865 29 21.828 3 0.862 82
4.8 20.190 01 10.983 6 0.750 61 4.675 21
10.0 20.013 48 148.411 0.021 73 101.192
16.0 26.709204 2.981103 0.8820203 2.344103
25.0 27.453206 2.683105 0.8819205 2.298105

Table II. Solutionsk lR of Eq. ~IV5! for the allowed bound states of angular
momentuml , for a range of values oflR.

lR

k lR

l50 l51 l52 l53 l54

3.2 1.524 09 0.478 012
4.8 2.379 42 1.831 83
10.0 4.999 77 4.781 85 4.323 25 3.544 91 2.147 04
16.0 8.0 7.870 87 7.606 72 7.193 96 6.606 55
25.0 12.50 12.419 0 12.255 3 12.005 8 11.665 1
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quantityA^r 2&2R2. The latter reflects the ‘‘squeezing’’ of
the wave function into a progressively narrower region as the
potential becomes deeper. We display these results in Table
IV. It is noted again that forlR525, the rms radius of the
d-function potential is essentially equal to the radiusR of the
rigid rotator.

3. Contribution to the TRK sum rule from the bound
states of thed-function potential

Using the wave functions, Eq.~IV5!, with the normaliza-
tions given by Eq.~IV9! and in Table I, we now evaluate the
contribution to the TRK sum rule from bound-state excita-
tions, Eq.~I7!, in the case of thed-shell potential. The results
are given in Table V for a range of values of the potential
strengthlR and are compared to the result for the rigid
rotator which was found earlier to be 2/3, Eq.~III3 !.
We reiterate the fact that the results in Tables III and IV

show that the behavior of thed-shell potential system takes
exactly the character of the quantized rigid rotator, in the
neighborhood oflR525. This is now strengthened by the
results in Table V which show that at that point, i.e., for
lR525, the contribution to the TRK sum rule from the
bound states of thed-shell potential is precisely the same as
that for the rigid rotator, i.e.,(bound statesf n052/3. Clearly,
the nature of the TRK sum rule implies that there must be
further excitations which will provide the additional 1/3 re-
quired to saturate the sum rule. This must come from exci-
tations to the continuum. While the rigid rotator has con-
tinuum states only at infinite energy, thed-shell potential has
calculable continuum states at finite energy. We proceed, in
the next subsection, to verify numerically that the missing
strength in the TRK sum rule comes indeed from the con-
tinuum states.

B. Continuum states

The radial Eq.~IV1!, with positive energy eigenvalues
El5\2kl

2/2m, has solutions

y~r !

r
55A

2

p
Dl j l~klr !, 0,r,R

1

2
A2

p
@e2id lhl

~1!~klr !1hl
~2!~klr !#, r.R

,

~IV12!

wherehl
(2)5 j l(klr )2 inl(klr ) is the Hankel function of the

second kind. These wave functions satisfy the required com-
pleteness relation and run smoothly into the free particle
wave functions in the limitl→0. For the evaluation of the
sum rule, Eq.~I7!, we need only thel51 wave functions,
and so the rest of the discussion focuses on these states only.
The amplitudeD1 and the phase shiftd1 in Eq. ~IV12! are

found from the continuity of the radial wave function at
r5R, and from an equation equivalent to~IV6! for the radial
function y(r ). The results are as follows:

D15
1

2 Fe2id1S 11 i
n1~k1R!

j 1~k1R! D1S 12 i
n1~k1R!

j 1~k1R! D G ,
~IV13!

and

tan d15
lk1R

2u j 1~k1R!u2

11lk1R
2 j 1~k1R!n1~k1R!

.

In the evaluation of Eq.~I7!, the sum is replaced by an inte-
gral over the momentumk1 of the l51 state. As the strength
of the potential,lR, and the argumentk1R of the Bessel
functions appearing in this integral become very large, the
numerical accuracy of the outcome suffers. We show the
final results in Fig. 1, where we display the contribution to
the sum rule from the bound states~shown also in Table V!,
and that from the states in the continuum, and the total con-
tribution which, as expected, is complete; i.e.,

(
bound states

1E
continuum

51 ~IV14!

when the two contributions are added. We stopped the nu-
merical evaluation of the contribution from excitations to the
continuum at aboutlR512, because numerical instabilities
sap the reliability of results at higher values oflR. But the
point is adequately made, that the TRK sum rule is satisfied
in the case of the sphericald-shell potential provided the
contribution from the continuum states is taken into account.

Table III. Distribution of bound state energies for thed-function potential
~similar to Eq.~IV11! for the rigid rotator!.

lR

1

2

@~kl11R!22~klR!2#

l11

l50 l51 l52 l53

3.2 1.047
4.8 1.153
10.0 1.065 1.043 1.021 0.995
16.0 1.024 1.022 1.018 1.013
25.0 1.009 1.009 1.009 1.008

Table IV. The rms radius for the ground state, and the confinement of the
particle trapped in thed-function potential.

lR k0R

A^r 2&
R

A^r 2&2R2

R

3.2 1.524 09 1.1552 0.578 44
4.8 2.379 42 1.0571 0.342 84
10.0 4.499 77 1.0101 0.142 55
16.0 8.0 1.0039 0.088 54
25.0 12.5 1.0016 0.056 57

Table V. Contribution to the TRK sum rule from bound states.

lR (bound statesf n0, d-function potential Rigid rotator

3.2 0.9042
4.8 0.8399
10.0 0.7142
16.0 0.6836
25.0 0.6729>2/3 2/3
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V. ADDITIONAL SUM RULES

It is worth extending the considerations of the previous
sections to sum rules involving multipoles higher than the
dipole.7 We define an operator

Ql
m5r lYl,m~q,f!, ~V1!

whereYl,m(q,f) with l>1 are the familiar spherical har-
monics. Following a procedure similar to the one described
earlier for the dipole sum rule, using the fundamental com-
mutation relations between position and momentum vari-
ables and the completeness relation, we find the following
sum rule in the case of a spherically symmetric ground state,
u0&:

(
n

~En2E0!u^nuQl
mu0&u25

\2

2m

l~2l11!

4p
^0ur 2l22u0&.

~V2!

It is interesting to examine this sum rule also for the rigid
rotator of lengthR. The energyEn is given by Eq.~III1 !, and
the matrix element on the left-hand side of Eq.~V2! is
^ l ,muQl

mu0& 5 d l ,ldm,mR
l /A4p, where we have substituted

^ l ,mu for ^nu. Hence the left-hand side of Eq.~V2! is
~\2/2m)/(l(l11)/4p)R2l22. Furthermore, with
^0uR2l22u0&5R2l22, the right-hand side of~V2! takes the
form ~\2/2m)(l(2l11)/4p)R2l22. Comparing these two
results, we find that the fraction of the sum rule limit, Eq.
~V2!, exhausted by the bound states of the rigid rotator is
~l11!/~2l11!. Obviously, forl51, this corresponds to the
previously found result of 2/3 for the dipole case, Eq.~III3 !.
For quadrupole transitions,l52, this fraction is 3/5, and, in
general,

l11

2l11
→

1

2
for l@1.

Hence, for high values ofl only half the strength of the sum
rule, Eq.~V2!, is contained in the spectrum of the rigid ro-
tator.
Equally interesting is the case of the monopole sum rule

where we show that the entire sum rule strength is missing.
The monopole operator isr̄ 2, and the corresponding sum
rule takes the form

(
n

~En2E0!u^nu r̄ 2u0&u252
\

m
^0u r̄ 2u0&. ~V3!

For the rigid rotator, the right-hand side of Eq.~V3! is
2\2/mR2, while the left-hand side is zero for the ground
state,n50, because of Eq.~III1 !, and remains zero forn.0
due to angular momentum conservation. Hence, the contri-
bution to the monopole sum rule from all the rotational states
of the rigid rotator is zero, and the entire strength of the sum
rule is to be found at infinite energies. This is a striking
result, but hardly surprising. The excitations induced by the
monopole operatorr̄ 2 do not involve changes of shape or
orientation, but changes of size only. These, however, re-
quire infinite energy due to the rigidity of the rotator.

VI. CONCLUSION

We showed through a direct calculation that the TRK sum
rule for dipole excitations by photon absorption is apparently
not saturated in the case of the rigid rotator. All the energy
states of the rigid rotator are bound and their contribution to
the TRK sum rule, i.e., the left-hand side of Eq.~I7!, is only
2/3 of the expected value. At the same time, we noticed that
in a spherically symmetric Hamiltonian, the centrifugal term
in the kinetic energy contributes 2/3 of the sum rule value,
while the radial momentum termPr

2/2m contributes the ad-
ditional 1/3. In the case of a perfectly rigid rotator, the radial
momentum term is missing and, consequently, 1/3 of the
sum rule should also be missing. Hence, the result of the
direct calculation was confirmed.
In the quantum regime, however, the radial momentum

term Pr
2/2m in the rotator Hamiltonian must be very large,

instead of being zero, due to the uncertainty principle. We
deduce that the apparently missing 1/3 strength of the TRK
sum rule, instead of being truly absent, will be found in the
very high energy region of the spectrum.
Indeed, we illustrated this fact by examining a three-

dimensional system under the action of ad-shell potential.
The rigid rotator is the limiting case of this system when the
potential becomes very strong. As expected, we found that as
the rigidity of the potential was increased, e.g., atlR;25
~see Tables III–V!, the behavior of the system approached
that of the rigid rotator, and the TRK sum rule was satisfied
by contributions from bound and continuum states, providing
2/3 and 1/3 of the sum rule, respectively, as illustrated in Fig.
1. We conclude that in the case of the rigid rotator as well,
the balance of 1/3 is contributed to the TRK sum by states in
the continuum. The difference is that for the rigid rotator
these states are at infinite energy.
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Fig. 1. The fraction of the TRK sum rule contributed by bound states~line
1! and continuum states~line 2! in the case of thed-shell potential, plotted
versus the dimensionless variabley5lR which is a measure of the strength
of the potential. At any point, the two contributions add up to 1. The straight
line shows the incomplete saturation, i.e., 2/350.667, of the TRK sum rule
in the case of the rigid rotator. For large values of the potential strength, i.e.,
y;25, the contribution from the bound states of thed-shell potential be-
comes equal to that of the rigid rotator.
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