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The Thomas—Reiche—Kuhn sum rule and the rigid rotator

E. Hadjimichael
Department of Physics, Fairfield University, Fairfield, Connecticut 06430

William Currie® and S. Fallieros
Department of Physics, Brown University, Providence, Rhode Island 02912

(Received 7 November 1995; accepted 25 September) 1996

It is shown that the Thomas—Reiche—Kuhn sum rule, associated with the photoabsorption cross
section from quantum systems, appears to be violated in the case of the quantized rigid rotator. The
origin of the apparent violation is investigated, and its resolution is presented on the basis of a
related system, i.e., a particle in a spheriédlinction potential whose energy spectrum approaches
that of the rigid rotator when the strength of the potential becomes large.

© 1997 American Association of Physics Teachers.

[. INTRODUCTION n f
[Her]=—i —

m

€p, (14)
It is well known that for relatively low energies, the inter- R

action of electromagnetic radiation with a microscopic sys-whereH is the Hamiltonian of the system under consider-

tem is dominated by electric dipoleéEQ) transitions. The ation, assumed to contain no velocity-dependent forces, we

in Cartesian coordinates; for circular polarizaticet,# €,
. o o and Eq.(I5) would contain spherical components of the po-
wheree is the polarization of the external electric field in an sjtion operator, i.e., those proportional toY, (8, ¢).
arbitrary direction, andai- is the electric charge of thgth By expanding the commutator in E¢5) and using the
particle. There is a well known sum rule that is associate@josure relation for the complete set of eigenstates of the
with the E1 amplitude, the Thomas—Reiche—Kuhn sumpermitian operatot, i.e.,

rule! which we proceed to derive.

matrix element for th&e1 amplitude, obtain
El=(V{|D-€¥;), 11 m .. . o~ .
CWilD-€hvy Wy S e AR e =1, (s
is expressed in terms of the dipole operator for the charged
system, i.e., where ¥, represents the ground state of the system, and
€* - e=1. We note that for the case of linear polarizatiois
D= 2 ejr_a(r_—ﬁ-), (12) a real unit vector, i.e.e* =€, and Eq.(I5) can be expressed
i

Starting from the fundamental commutation relation —~ —~  ——F
9 > wEOW[N=a-1), (16)
[
— 5L repl=1, (I3) " we finally obtain the result

. L. . L 2m
which is intimately related to the uncertainty principle, and fo__ E —E W e TTw.2=1 |7
the identity En: no= 72 En: (En—Eo)[(Wnle-r[Wo)] , (I7)
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which is the celebrated Thomas—Reiche—KyMRK) sum  rigid rotator which exhibits a behavior that appears at first to
rule! The quantitiesf,, are the well-known “oscillator be idiosyncratic. In Sec. IV, we achieve an understanding of
strengths,” so called because of their appearance in the anthis behavior by considering the rigid rotator as the limit of a
plitude for scattering of light from a harmonic oscillaton regular three-dimensional system composed of a particle
the long wavelengtltelectric dipole approximation. In Eq. bound in a spherica#-shell potential, thus avoiding the con-
(17) we have restricted ourselves to the case of a single pastraint of perfect rigidity. The strength of th&shell poten-
ticle of massm bound in a potential. For a two-body system, tial that leads to the appearance of an energy spectrum ap-
r would be the separation distance between the two particlggroaching that of the rigid rotator is investigated. We discuss
andm would be replaced by the reduced masdor a many-  briefly some additional sum rules in Sec. V, and we present
body systemr would be replaced by a sum over particles. concluding remarks in Sec. VI.

As the derivation of Eq(l7) indicates, the TRK sum rule
is a direct consequence of the fundamental laws of quantum
mechanics. In addition, it implies some important results!l- THREE EXAMPLES
concerning directly measurable quantities, such as the scat-
tering amplitude and the cross section for photon absorption
by a bound system. Before proceeding further we present

1. The three-dimensional harmonic oscillator
The Schrdinger equation for this system is

here examples of such results. p? 2.2 _
It can be readily shownthat the integrated cross section ﬁJF 2 Mwor * | Wn=En¥n,

for E1 photon absorption is i _ 5
and vyields energy eigenvalues,=(n+3)%wy, So that

(E,—Eo) =nhw,. Furthermore, it is readily showrhat the
electric dipole matrix element is, in this case,

where the TRK sum rule was used in the last stéff(E) is (W& TTW ) = [ h s
the cross section for absorption of photons of endfdyy a n 0 2Mmawgy ™

bound particle of charge in the electric dipole E1) ap-
proximation. Equation(18) shows that the integrated cross
section has a finite upper bound independent of the nature
the binding force$™

Furthermore, we find that the amplitude for forward scat-
tering of photons of energi from a bound system, in the
E1 approximation, is

w h h
E1 9. 2.2 — 9202
fo ol EYdE=27%e c En fro=2me ot (18)

so thatf,,=1, as seen from E(l7), and all the other oscil-
Jﬁ\tor strengths are equal to zero. The sum rule is saturated by
exactly one single transition to the first excited state of the
harmonic oscillator.

2. The infinite spherical well

For a particle of masm trapped in a spherical, infinitely
deep, potential well of radiuR, i.e.,

e? R
fer(E)=—E 37— X [(W|e-T W)l _|0 Osr=R
hct V(r)= )
o, r=R
x 2Eno (19) there is an infinite number of bound states. The calculation of
(E—Epo)?+in’ the oscillator strengths is straightforward and yiélds:
with E,o=E,,— E, and »—0. It has a high energy limit f10=0.9676, f,;=0.0254,
e? e? f30=0.0048, f,,=0.0016
fer(B) = =5 2 fro=——> (110) ® L ’
E—x n f50: 00007,

Again, the TRK sum rule was applied in the last step. Equawith all the other oscillator strengths being negligibly small.
tion (110) indicates that at high energies, this scattering amThe above numbers add up¥3_,f,=1. That is, the TRK
plitude becomes identical to the Thomson amplitude describsym rule is saturated by excitations to the first five states and
ing the scattering of photons from a free particle with thejs dominated by the contribution of the first excited state.
same charge and mass. _ Note that the indices=1, 2, 3, 4, 5 inf,,, represent exci-
Equations(I8) and (110) appear in many textbooks, yet a tations of one angular momentum state, kel state, as is

comment is in order at this point with regard to the compat-lear from the nature of the electric dipole operator in Eq.
ibility between the long wavelength approximation which (j7).

implies a low energy regime, and the high energy limit em- 3. The hydrogen atom.

ployed in these equations. It is important to remember that |t is shown in Ref. 6 that in the case of an electron—proton
both equations are nonrelativistic. In this context, “high en-system, the sum of the oscillator strengths from transitions to

ergy” implies that the energy of the photon is large com-pound exited states amounts to
pared to typical excitation or ionization energies, but still

small compared to the mass of the bound particle. An atomic 2 f —05640
system is typical of this situation where the high-energy limit ~ vsgna ™° ’
is still compatible with the nonrelativistic approximation and
the dominance of th&1 transition.

In the following we examine the saturation of the TRK
sum rule, Eq(17), and identify the energy region which con-
tains most of the significant oscillator strength. Thus, in Sec.
Il we present three typical examples which illustrate the satuso that the TRK sum rule is indeeXi,f,,=1, and is thus
ration of the sum rule. In Sec. Ill, we consider the case of theigorously satisfied. The contribution from the unbound

and the equivalent sum from transitions to unbound states

> f,0=0.4360,

unbound
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states in the continuum is rather well concentrated at ener- A first glimpse into the question at hand is made possible
gies not far from the ionization threshold. by recalling the difference between a classical rotator and a
qguantal rotator. In the former case, a rigidly fixed valudRof
implies that there is no radial momentum and e term
[ll. THE RIGID ROTATOR disappears. In the quantal case, a “constant” value Ror
o ) o ) means that the uncertainty Ris much smaller thafRr, and
The rigid rotator is envisioned as two particles of MaBS  hence the uncertainty in the radial momentum, or the expec-
andm,, rigidly separated at a fixed distance=R. Hence, tation value ofP?, becomes very large; indeed, it tends to
this system is often used as a simplified model describing thgyfinity in the limit of perfect rigidity. In consequence, radial
rotational excitations Of, Say_, a diatomic molecule. The re'excitations occur at very h|gh energies in the quanta' case,
duced mass of the system js=mym,/(m;+m,), and its  approaching infinitely high energies in the limit of perfect
moment of inertia isl = uR". TJ%G Sl”;p“fIGd Hamltoman rigidity and zero uncertainty ifR. We deduce from this and
describing the system islg=L/2uR" where L* is the  the earlier discussion that the apparently missing 1/3 in the

square of the angular momentum operator which is a purely Rk sum rule for the rigid rotator is actually to be found at
angle-dependent operator. The eigenvalues of the system gfginitely high energies.

the familiar ones At this point we need a specific example which illustrates
(14 1)A2 these considerations. We present such an example in the fol-
E':W’ (ma) lowing section.
)72

wherel =0, 1, 2,..., while the eigenfunctions are the spheri-lv. THE SPHERICAL &SHELL POTENTIAL
cal harmonicsy| (6, ). There is only one energy state for

each value of the quantum numberand the only degen- ~ Consider a particle of mass in a &-shell potentialV(r)
eracy is associated with the azimuthal quantum numbef —99(r —R). This potential has at most one bound state
m=I, 1—1, |—2...—I. Taking the polarizatiorz along the for each angular momentum valliend a continuous spec-
z-axis, we find the dipole matrix element to be trum above the “ionization” threshold. We shall show nu-

merically that asy, the strength of the potential, increases,
. R the bound-state energy spectrum will resemble that of a rigid
(Yimle Yoo =(Y|mR cos6|Yq = NG 3,10m,0- rotator, and that 1/3 of the strength in the TRK sum rule will
be located at high energies in the continuum, i.e., above the

(112) dissociation threshold. For the perfectly rigid rotator, this
Evaluating the TRK sum rule, i.e., the left-hand side of Eq.threshold is obviously at infinite energy, and hence the miss-
(17), by means of Eqsilll1) and (l112) we find, ing sum rule strength will be located at infinity.
ou | 22\ R 2 The Schrdinger equation for the radial wave function
2 fro=Ff10=>7 <—2 — =, (Nn3) Re, = ui(r)/r in the case of the particle in&shell potential
o he \2uR?) 3 3 !

takes the form,
in apparent violation of the TRK sum rule, EQ7). Given
the fundamental nature of this sum rule and its direct relatiom?u,(r) 1(1+1) 2ug
to physical processes as illustrated in Sec. I, the missing 1/3 g2 7 U(N)+ =7 S(r—Rjuy(r)
in the result of Eq(1113) deserves further discussion.
To begin to understand the resliltl3), we review the 2u
derivation of Eq.(I7) using the general Hamiltonian fora =~ 22 Eju(r). (IV1)
particle of massn,

We shall next obtain solutions for this equation for both

p2 12 . .
g $+ o V() (1114) bound states and states in the continuum.

A. Bound states

whereP,=(f-p+p-f)/2 is the radial momentum of the par-  We write the energy eigenvalug in terms of the wave
ticle in a spherically symmetric potentis(r), andL? is the numberx,

square of the angular momentumsr/r is the unit vector. -

Equation (I114) shows explicitly the two kinetic energy _ K| h

terms, one associated with the radial motion and the other E=—B|=- 2u (Iv2)
with rotational motion. A simple calculaztion shows that 1/3

of the TRK sum rule originates in ther term, while the  ang define a quantity =2xg/%2; the radial equation be-
remaining 2/3 is obtained from the centrifugal tetheven  comes

though the value of? in the denominator of this term is not

necessarily constant. In comparison to B4 ), the Hamil- I(1+1)

tonian for ;he rigid rotator does not ha\{e aterm p_roportional uy(r)— —z u(r)+A8(r=Ryu(r)= K|2U|(r).

to the radial momentum; hence the missing 1/3 in the TRK

sum rule, Eq.(llI3). Understanding the mechanics which (IV3)
leads to the resulflll3), however, does not explain the . .
physical implications of the unaccounted 1/3 of the sum ruld O 0<F <R and forr>R, this equation takes the form
in the case of the rigid rotator. This is an important issue in (1+1)

view of the intimate relation of this sum rule to physical "o _ .2

processes. It is investigated in the following. ur(r) rz W)= rit(r). (v4)
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Integrating Eq(IV4) over the range €r <, we obtain a
discontinuity inu, (r), the first derivative ofy (r), atr =R;
that is

This is the Bessel equation with solutions

u(r) Ciji(irr), O<r<R

r A +Bn (i) =AhY(ikr), r>R,
(IV5) uf (R")—u/(R7)=—Au(R) (IV6)

where j;, n,, and h{’=j,+in, are the spherical Bessel,

Neumann and Hankefirst kind) functions, respectively. For with R*=R*¢, e—0. Dividing the above equation by
the case 8r <R we take into account the fact that the so- u;(R), and using the continuity of this function e+ R, and
lution must be regular at=0. Eq. (IV5), we find the result

ALTh{Y (0] Trj (i) ]= AL ) I ()]’
A|rh|(l)(iK|r).

=\ (IV7)
-

The numerator on the left-hand side of this equation is théhere is only one bound state for every valud .0Vith Eq.
Wronskian of the functionsh{}(ixr) andrj,(ix;r), and  (IV10) in mind, we solve Eq(IV8) numerically for a range
can be readily shown to be a constant independent of thef values ofAR. We show the results fokR, 0<I=<4, in
value ofr. Evaluating it atr=0, and substituting into Eq. Table II.

(IV7) we find
(kR) 2. Comparison of the relative distribution of energy states
R~ — (KR)2h{M(i K R)j (i K R). (IV8)  and of root-mean-square radii of thé-function

potential and the rigid rotator
We will solve this equation for the dimensionless product
xR which defines the bound state eneigy, Eq. (IV2), in
terms of the dimensionless variable= \R.

Writing the energyE, of the rigid rotator in terms of a
wave numbelk,, and using Eq(llI1), we find

1 [(K|+1R)2—(K|R)2] . _
1. Normalization and energy eigenvalues > 1 =1 for the rigid rotator.
The constant<, and A, in the wave function, Eq(IV5) (IV11)

are determined by means of the wave function normalizatiorThis gives a measure of the energy gap between successive
condition and the continuity condition at=R. We find the  angular momentum states in the case of the rigid rotator. At

result the same time, using the results for théunction potential
C =c k32 in Table I, we evaluate the left-hand side of Ety11) for

I=Cikr this system also, and we find that aR grows larger, its
A=a k. (V9)  value approaches 1, i.e., the value in Et/11), rather

quickly. Indeed, the two energy distributions, for the rigid
The values ofc; and &, for the angular momentum states yotator and for thes-function potential, become essentially
|=0 andl=1, and for a range of values g=\R, indica-  jqentical when\ R=25. We show the results for th@shell
tive of potential strength, are shown in Table I. potential in Table Ill.

Before we solve Eq(IV8), it is useful to use it to derive "~ aggitional information regarding how thé-function po-
the condition that an angular momentum state of quantuneniial system approaches the rigid rotator is given by the
numberl be bound, for a given value ofR. Clearly, this  y51yes of the rms radius for the ground state in the former
condition is satisfied forR—0. Employing the analytic 556 compared to the radiRsof the rigid rotator. Using the
expressions for spherical Besse_-l functions near the origin, WEround state wave function, EqdV5) and (IV9) and Table
find that states are bound provided I, for =0, we evaluate both the rms radiyér?), and the

21+ 1<AR. (IV10)

Table Il. Solutions«R of Eq. (IV5) for the allowed bound states of angular

o momentuml, for a range of values ofR.
Table I. Normalization constants, Ed#v/5) and(IV9), for the bound states

I=0 andl=1, for a range of values ofR. «R
AR G ag Cq a; AR =0 =1 =2 =3 =4
3.2 —0.484 66 4.865 29 21.828 3 0.862 82 3.2 1.524 09 0.478 012
48 —0.19001 10.983 6 0.750 61 467521 4.8 2.37942 1.83183
10.0 —0.01348 148.411 0.021 73 101.192 10.0 4,999 77 4.781 85 4.323 25 3.544 91 2.147 04
16.0 —6.709-04 2.98103 0.8820-03 2.344+03 16.0 8.0 7.870 87 7.606 72 7.193 96 6.606 55
25.0 —7.453-06 2.683+05 0.8819-05 2.298+05 25.0 12.50 12.4190 12.2553 12.005 8 11.6651
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Table lll. Distribution of bound state energies for thdunction potential Table V. Contribution to the TRK sum rule from bound states.
(similar to Eq.(IV11) for the rigid rotatoy.

AR Shound statekno, S-function potential Rigid rotator
}[(KHlR)Z*(KlR)Z] 3.2 0.9042
2 I+1 4.8 0.8399
AR 1=0 =1 1=2 1=3 100 0.7142
16.0 0.6836
3.2 1.047 25.0 0.6729=2/3 2/3
4.8 1.153
10.0 1.065 1.043 1.021 0.995
16.0 1.024 1.022 1.018 1.013
25.0 1.009 1.009 1.009 1.008

B. Continuum states

The radial Eq.(IV1), with positive energy eigenvalues
E,=%2k?/2u, has solutions
quantity \(r?)—R?. The latter reflects the “squeezing” of
the wave function into a progressively narrower region as the 2
potential becomes deeper. We display these results in Tabl?r) —Dili(kir),  0<r<R

IV. It is noted again that foh R=25, the rms radius of the "’

&function potential is essentially equal to the radiuef the r 1 2 )
rigid rotator. 5 Vo [ehPkn+hi? k)], r>R
(IV12)

whereh(®=j,(k;r)—in,(kr) is the Hankel function of the
second kind. These wave functions satisfy the required com-
pleteness relation and run smoothly into the free particle
Using the wave functions, EqlV5), with the normaliza- Wave functions in the limih—0. For the evaluation of the

tions given by Eq(IV9) and in Table I, we now evaluate the SUM rule, Eq.I7), we need only thé =1 wave functions,
contribution to the TRK sum rule from bound-state excita-and so the rest of the discussion focuses on these states only.

tions, Eq.(17), in the case of thé-shell potential. The results , 'Ne amplitudeD, and the phase shif, in Eq. (IV12) are

are given in Table V for a range of values of the potentialfound from the continuity of the radial wave function at
strengthAR and are compared to the result for the rigid " = R, and from an equation equivalent@6) for the radial

rotator which was found earlier to be 2/3, EjI3). function »(r). The results are as follows:
We reiterate the fact that the results in Tables Il and IV

3. Contribution to the TRK sum rule from the bound
states of thes-function potential

show that the behavior of thé&shell potential system takes D.—= ezi51<1+i ni(ksR) 1 ni(kiR)
exactly the character of the quantized rigid rotator, in the 172 j1(k1R) j1(k1R) /|’
neighborhood oi\R=25. This is now strengthened by the (IV13)

results in Table V which show that at that point, i.e., for

AR=25, the contribution to the TRK sum rule from the and

bound states of thé-shell potential is precisely the same as

that for the rigid rotator, i.e.Xpound statekno=2/3. Clearly, Ak;R?|j1(k.R)|?

the nature of the TRK sum rule implies that there must be 18N 01~ T 1 =2 1 RN (k.R)
o ) X . . 1RJ1(kR)n1(k1R)

further excitations which will provide the additional 1/3 re-

quired to saturate the sum rule. This must come from exciy, the evaluation of Eq(7), the sum is replaced by an inte-
tations to the continuum. While the rigid rotator has CON-gral over the momenturk, of thel =1 state. As the strength
tinuum states only at infinite energy, tieshell potential has ot the potential AR, and the argumenk,R of the Bessel
calculable continuum states at finite energy. We proceed, ifnctions appearing in this integral become very large, the
the next _subsect|0n, to verify numenc_ally that the missing,merical accuracy of the outcome suffers. We show the
strength in the TRK sum rule comes indeed from the cOning) results in Fig. 1, where we display the contribution to
tinuum states. the sum rule from the bound stateshown also in Table )/

and that from the states in the continuum, and the total con-

tribution which, as expected, is complete; i.e.,

Table IV. The rms radius for the ground state, and the confinement of the
particle trapped in thé-function potential. +f =1 (IV14)
bound states <continuum
{r?) W(rH-Rr?
AR xoR R R when the two contributions are added. We stopped the nu-
merical evaluation of the contribution from excitations to the

i'g ;g?g 22 iég?i g‘gzg gj continuum at about R=12, because numerical instabilities
10.0 4.499 77 10101 0142 55 sap the reliability of results at higher values)dR. But thg _
16.0 8.0 1.0039 0.088 54 point is adequately made, that the TRK sum rule is satisfied
25.0 125 1.0016 0.056 57 in the case of the sphericatshell potential provided the

contribution from the continuum states is taken into account.
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1 N+1 for A1

1 Hence, for high values of only half the strength of the sum
rule, Eq.(V2), is contained in the spectrum of the rigid ro-

0.9

08 ¢

o7 | tator.
o Equally interesting is the case of the monopole sum rule
- 0:667 . . ..
= 06} where we show that the entire sum rule strength is missing.
£ = )
3 The monopole operator is “, and the corresponding sum
505y rule takes the form
% o4 21 12— 5 L a2
£ 2 (Ea=Eo)l(n[r ?|0)|?=2 - (0[r ?0). (V3)

For the rigid rotator, the right-hand side of EQ/3) is
272/mR2, while the left-hand side is zero for the ground
state,n=0, because of EIII1), and remains zero far>0

due to angular momentum conservation. Hence, the contri-

0 e — — — bution to the monopole sum rule from all the rotational states
A T of the rigid rotator is zero, and the entire strength of the sum
Potential strength y rule is to be found at infinite energies. This is a striking

result, but hardly surprising. The excitations induced by the
Fig. 1. The fraction of the TRK sum rule contributed by bound stéiee monopole operator_2 do not involve changes of shape or

1) and contnjuum _state(shne 2)_ in the case of _the%shell potential, plotted orientation, but changes of size only. These, however, re-
versus the dimensionless varialgle AR which is a measure of the strength

of the potential. At any point, the two contributions add up to 1. The straighthire infinite energy due to the rigidity of the rotator.

line shows the incomplete saturation, i.e., 2667, of the TRK sum rule
in the case of the rigid rotator. For large values of the potential strength, i.e
y~25, the contribution from the bound states of thshell potential be- VI. CONCLUSION

comes equal to that of the rigid rotator. We showed through a direct calculation that the TRK sum

rule for dipole excitations by photon absorption is apparently
not saturated in the case of the rigid rotator. All the energy
states of the rigid rotator are bound and their contribution to
the TRK sum rule, i.e., the left-hand side of Ety), is only

2/3 of the expected value. At the same time, we noticed that

It is worth extending the considerations of the previous: . ; M .
9 b in a spherically symmetric Hamiltonian, the centrifugal term

z(ierfct)llg?sV\;g gg%éu;isoglgg;g?g multipoles higher than thein the kinetic energy contributes 2/3 of the sum rule value,
while the radial momentum ter@?/2m contributes the ad-
QL=r"Y, ,(9,8), (v1) ditional 1/3. In the case of a perfectly rigid rotator, the radial
’ momentum term is missing and, consequently, 1/3 of the
whereY, ,(9,¢) with A=1 are the familiar spherical har- sum rule should also be missing. Hence, the result of the
monics. Following a procedure similar to the one describedlirect calculation was confirmed.
earlier for the dipole sum rule, using the fundamental com- In the quantum regime, however, the radial momentum
mutation relations between position and momentum variterm P?/2m in the rotator Hamiltonian must be very large,
ables and the completeness relation, we find the followingnstead of being zero, due to the uncertainty principle. We
sum rule in the case of a spherically symmetric ground stategeduce that the apparently missing 1/3 strength of the TRK
|0): sum rule, instead of being truly absent, will be found in the
5 very high energy region of the spectrum.
S E—E )|<n|Q“|0>|2:ﬁ— N(2N+1) (0[r*20) Indeed, we illustrated this fact by examining a three-
- n— Eo ]\ o’m 4 ' dimensional system under the action oB&hell potential.
(v2)  Therigid rotator is the limiting case of this system when the
potential becomes very strong. As expected, we found that as
It is interesting to examine this sum rule also for the rigidthe rigidity of the potential was increased, e.g. \&~ 25
rotator of lengthR. The energ\E,, is given by Eq(lll1), and (see Tables llI-Y, the behavior of the system approached
the matrix element on the left-hand side of H¥2) is that of the rigid rotator, and the TRK sum rule was satisfied
(I,m|Q¥|0) = 5|,>\5m,uRI/\/E' where we have substituted by contributions from bound and continuum states, providing
(I,m| for (n|. Hence the left-hand side of EdqV2) is 2/3 and 1/3 of the sum rule, respectively, as illustrated in Fig.
(ﬁZ/Zm)/()\()\+1)/4qT) R\ -2 Furthermore, with 1. We conclude that in the case of the rigid rotator as well,
<o|R2N*2|o>:R2k*2, the right-hand side ofv2) takes the the balance of 1/3 is contributed to the TRK sum by states in
form (2/2m)(\(2\+1)/47)R?* 2. Comparing these two the continuum. The difference is that for the rigid rotator
results, we find that the fraction of the sum rule limit, Eq. these states are at infinite energy.
(V2), exhausted by the bound states of the rigid rotator is
(A+1)/(2A+1). Obviously, forn=1, this'corresponds to the ACKNOWLEDGMENT
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