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J. Group Theory 5 (2002), 365–381 Journal of Group Theory
( de Gruyter 2002

Groups whose universal theory is axiomatizable by
quasi-identities

Benjamin Fine, Anthony M. Gaglione, Alexei Myasnikov and
Dennis Spellman

(Communicated by D. J. S. Robinson)

Abstract. Discriminating groups were introduced in [3] with an eye toward applications to the
universal theory of various groups. In [6] it was shown that if G is any discriminating group,
then the universal theory of G coincides with that of its direct square G � G. In this paper we
explore groups G whose universal theory coincides with that of their direct square. These are
called square-like groups. We show that the class of square-like groups is first-order axioma-
tizable and contains the class of discriminating groups as a proper subclass. Further we show
that the class of discriminating groups is not first-order axiomatizable.

1 Introduction

A discriminating group is a group G such that every group separated by G is dis-
criminated by G. Discriminating groups were introduced in [3] with an eye toward
applications to the universal theory of various groups. In [6] various important ex-
amples of discriminating groups were given. These include Thompson’s group F, the
commutator subgroup of the Gupta–Sidki groups and some of Grigorchuk’s groups
of intermediate growth. Further in [6] it was shown that, for a finitely generated,
equationally noetherian group G (see Section 2), the minimal universally axiomatiz-
able class containing G coincides with the quasivariety generated by G if and only if
G is discriminating. In that same paper it was shown that if G is any discriminating
group, then the universal theory of G coincides with that of its direct square G � G.
In this paper we further explore groups G whose universal theory coincides with that
of their direct square. A group G is termed square-like if the universal theory of G

coincides with the universal theory of its direct square G � G. Thus every discrimi-
nating group is square-like. We prove that the class of square-like groups is first-
order axiomatizable. Recall that this means that this class of groups is the model class
for some set of first-order sentences (see Section 2). Further we show that a group is
square-like if and only if the minimal universally axiomatizable class containing G

coincides with the quasivariety generated by G. Moreover we prove that the class of
discriminating groups is a proper subclass of the class of square-like groups and fur-



ther the class of discriminating groups is not first-order axiomatizable. To do this we
give an example of a non-discriminating square-like group and an example of a dis-
criminating group elementarily equivalent to a non-discriminating group.
In Section 2 we give the necessary preliminaries from both group theory and logic.

In Section 3 we first review some necessary results on discriminating groups and then
introduce square-like groups and prove that the class of discriminating groups is a
proper subclass of the class of square-like groups and further that the class of dis-
criminating groups is non-axiomatic. We then prove our main results on square-like
groups. In Section 4 we consider square-like abelian groups and give su‰cient con-
ditions on an abelian group A so that A is square-like if and only if it is discriminat-
ing. Finally we close with some open questions.

2 Preliminaries in group theory and logic

We start with some necessary definitions and results from group theory.

Definition 1. Let X be a non-empty class of groups and let H be a group. Then X
separates H provided that for every non-trivial element h A H there exist a group
Gh A X and a homomorphism jh : H ! Gh such that jhðhÞ0 1. The class X discrim-

inates H provided that for every finite non-empty set S of non-trivial elements of H

there exist GS A X and a homomorphism jS : H ! GS such that jSðhÞ0 1 for all
h A S. If X ¼ fGg consists of a single group then we say that G separates (discrim-

inates) H. We say that X is a separating family of groups provided that every group G

separated by X lies in X.

Observe that a separating family of groups is closed under isomorphism. This is so
since if H GG A X, then an isomorphism j : H ! G does not annihilate any non-
trivial element of H; hence G separates H and so H A X.
Now let X ¼ fx1; x2; x3; . . .g be a countably infinite set of ordered distinct vari-

ables. For each positive integer n let Xn ¼ fx1; x2; . . . ; xng and let F ðXnÞ be the free
group with base Xn. Then a non-empty subset S of FðXnÞ shall be viewed as a system
of equations

fwðx1; x2; . . . ; xnÞ ¼ 1 : w A Sg:

A solution of S in a group G shall be an ordered n-tuple ðg1; . . . ; gnÞ A Gn such that

wðg1; . . . ; gnÞ ¼ 1

in G for all w A S.

Definition 2. A group G is equationally noetherian provided that for all positive in-
tegers n and all subsets SJFðXnÞ there is a finite subset S0JS such that the systems
S0 and S have precisely the same solutions in Gn.
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It was shown in [2] that non-abelian free groups and more generally linear groups
over unital noetherian commutative rings are equationally noetherian. In particular
all abelian groups are equationally noetherian.
We now introduce prevarieties. Our work on discriminating groups and square-like

groups involves both prevarieties and quasivarieties. Quasivarieties will be introduced
later in this section. Recall that a variety of groups can be characterized as a class
of groups closed under subgroups, quotients and arbitrary cartesian products; see
[10, p. 14].

Definition 3. A prevariety of groups is a class of groups X satisfying the following two
properties:

(1) X is closed under subgroups;

(2) X is closed under cartesian products (of arbitrary indexed families ðGiÞi A I of
groups from X).

Observe that since the trivial group 1 is a subgroup of any group G, every pre-
variety X must contain at least 1. Note also that the intersection of any family of
prevarieties is again a prevariety; so, if Y is any class of groups there is a least pre-
variety pvarðYÞ containing Y. This is the prevariety generated by Y. In the case that
Y ¼ fGg is a singleton, we write pvarðGÞ for pvarðYÞ and call pvarðGÞ the prevariety
generated by G. The following theorem can be deduced from work of Birkho¤ [1]
from which group varieties can be classified as closed classes of groups (see [10] or
[11]).

Theorem 1. Let X be a class of groups. Then X is a prevariety of groups if and only if

X is a separating family of groups.

Proof. Suppose first that X is a prevariety of groups. Let the group H be separated by
X. For each h0 1 in H there is a group Gh A X and a homomorphism jh : H ! Gh

such that jhðhÞ0 1. Then H embeds into
Q

h AH�f1g Gh; hence H is, up to isomor-

phism, a subgroup of a cartesian product of groups in X. It follows that H lies in X
whenever H is separated by X. We have thus proven that every prevariety is sepa-
rating.
Now let X be a separating family of groups. Suppose that H A X and G is a sub-

group of H. Given any g0 1 in G, the inclusion map i : G ! H does not annihilate
g. Thus G is separated by X; hence G lies in X. Thus X is closed under subgroups.
Now let ðGiÞi A I be an indexed family from X. Let g ¼ ðgiÞ0 1 lie in

Q
i A I Gi. Choose

i0 A I such that gi0 0 1. If p :
Q

i A I Gi ! Gi0 is projection onto the i0-coordinate, then
pðgÞ ¼ gi0 0 1. Hence X separates

Q
i A I Gi; therefore

Q
i A I Gi lies in X. Thus X is

closed under cartesian products. We have shown that every separating family of
groups is a prevariety of groups.

We now present the necessary preliminaries from model theory and logic. Let L be
the first-order language with equality containing a constant symbol 1, a unary oper-
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ation symbol �1 and a binary operation symbol 	. We shall be considering only those
L-structures which are groups; hence, here and in what follows, we (tacitly) assume
the group axioms.
We remark that being first-order means that in the intended interpretation of any

formula or sentence all of the variables (free or bound) are assumed to take on as
values only individual group elements and never, for example, subsets of nor func-
tions on the group in which they are interpreted.
If F is a consistent set of sentences of L, then the class MðFÞ of all groups G sat-

isfying every sentence j in F is the model class of F. Note that every such class is
non-empty and closed under isomorphism. If X is a class of groups, then X is axi-

omatic provided that there is at least one set F of sentences of L such that
X ¼ MðFÞ.
Suppose that G and H are groups and l : G ! H is a function which preserves the

truth of formulas in the following sense: for every integer nd 0 and every formula
jðx1; . . . ; xnÞ of L containing at most the distinct free variables x1; . . . ; xn it is the case
that, for every ordered n-tuple ðg1; . . . ; gnÞ A Gn, jðlðg1Þ; . . . ; lðgnÞÞ is true in H if and
only if jðg1; . . . ; gnÞ is true in G. We claim that such a map must be a group mono-
morphism. If g3 ¼ g1g2 in G, then applying the above to the formula x3 ¼ x1 	 x2, we
get lðg3Þ ¼ lðg1Þlðg2Þ; so that l is homomorphic. Furthermore applying the above
to the formula x1 ¼ 1, we conclude that lðgÞ ¼ 1 implies that g ¼ 1, so that l is, as
claimed, monic.

Definition 4. Let G and H be groups and l : G ! H be a group monomorphism.
Then l is an elementary embedding provided that l preserves the truth of formulas. If
G is a subgroup of H and the inclusion map i : G ! H is an elementary embedding,
then we say that H is an elementary extension of G.

Examples. (1) Let G be a group and let I be a non-empty set. Let d : GI ! G be the
diagonal map, i.e., dðgÞðiÞ ¼ g for all i A I . Let D be an ultrafilter on I. Then the map
d from G into the ultrapower GI=D given by g 7! ½dðgÞ�D is an elementary embedding.
(2) Let l : G ! H be an isomorphism from the group G onto the group H. Then l

is an elementary embedding.

Since every sentence of L is a formula of L containing no free variables, we im-
mediately deduce that the existence of an elementary embedding l : G ! H is a suf-
ficient condition for G and H to satisfy precisely the same sentences of L.

Definition 5. Let G and H be groups. Then G and H are elementarily equivalent pro-
vided that they satisfy precisely the same sentences of L.

Example. Let F be a free group of countably infinite rank with basis A¼fan : n < og.
Let F 0 be the commutator subgroup of F. Then F and F 0 are elementarily equivalent
since they are isomorphic. However F is not an elementary extension of F 0. For ex-
ample, the formula
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bx ð½½a0; a1�; x� ¼ ½½a0; a1�; a2�Þ

is true in F but false in F 0. Here ½x; y� is the commutator x�1y�1xy.

We wish now to consider various special kinds of sentences of L. A universal sen-

tence of L is one of the form

Ex jðxÞ;

while an existential sentence is one of the form

bx jðxÞ

where x is a tuple of variables and jðxÞ is a quantifier-free formula of L where the
only free variables are the variables in the tuple x. (Vacuous quantifications are per-
mitted and each of Exc and bxc is logically equivalent to c if the variable x does not
occur in c.)
A universal sentence of the form

Ex
�
5
i

ðuiðxÞ ¼ 1Þ ! ðwðxÞ ¼ 1Þ
�

is called a quasilaw or quasi-identity. Note that every identity ExðwðxÞ ¼ 1Þ is equiv-
alent to a quasilaw Ex, y ððy 	 y�1 ¼ 1Þ ! ðwðxÞ ¼ 1ÞÞ.

Definition 6. Let X be a non-empty class of groups. The universal closure uclðXÞ of X
is the model class of the set of all universal sentences j true in every group G in X. A
quasivariety is the model class of a set of quasilaws. The quasivariety qvarðXÞ gen-

erated by X is the model class of those quasilaws true in every group in X. If X ¼
fGg is a singleton, then we write uclðGÞ for the universal closure of G and qvarðGÞ
for the quasivariety generated by G.

The following facts are immediate.

(1) uclðXÞ and qvarðXÞ are axiomatic. Moreover uclðXÞ is the least universally axio-
matizable class containing X and qvarðXÞ is the least quasivariety containing X.

(2) The model class operator reverses inclusions; that is, if F and C are consistent
sets of sentences of L and FJC, then MðCÞJMðFÞ. It follows from this that
uclðXÞJ qvarðXÞ.

(3) It is straightforward to verify that every quasivariety contains the trivial group 1,
is closed under subgroups and is closed under cartesian products. Thus every
quasivariety is an axiomatic prevariety. We shall presently see that the converse is
also true so that every axiomatic prevariety is a quasivariety. However the next
example shows that not every prevariety need be axiomatic and hence need not
be a quasivariety.
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Example. Call an abelian group reduced provided that it contains no non-trivial di-
visible subgroup. It is straightforward to verify that the class of all reduced abelian
groups is a prevariety. One can produce an ultrapower (see [5]) of Z which contains a
copy of Q. It follows that pvarðZÞ is not axiomatic; hence pvarðZÞ is not a quasi-
variety.

We now state (without proof ) a series of lemmas (and consequences thereof )
which are well known to model theorists. The reader may refer to [4, 5, 7] for more
details.

Lemma 1. Let X be a class of groups. Then X is axiomatic if and only if X is closed

under both ultraproducts and elementary equivalence.

Lemma 2. Let G and H be groups. Then every universal sentence of L true in G is also

true in H if and only if H is embeddable in an elementary extension �G of G.

Lemma 3. Let X be an axiomatic class of groups. Then X is universally axiomatizable

(i.e., has at least one set of universal axioms) if and only if X is closed under subgroups.

Lemma 4. Reduced products preserve elementary equivalence (i.e., if I is a non-empty

set, and Gi is elementarily equivalent to Hi for all i A I and D is a proper filter on I,
then

Q
i A I Gi=D is elementarily equivalent to

Q
i A I Hi=D).

Corollary 1. Elementary equivalence is preserved by cartesian products and ultra-

products in the sense of Lemma 4.

Lemma 5. Let X be an axiomatic class of groups. If X is closed under products of two

factors, then X is closed under cartesian products of an arbitrary number ( finite or in-

finite) of factors.

Lemma 6. Let X be a universally axiomatizable class of groups. Then X is a quasi-

variety if and only if the trivial group 1 lies in X (equivalently, X is non-empty) and X
is closed under cartesian products.

Corollary 2 (Mal’cev). A prevariety is a quasivariety if and only if it is axiomatic.

Proof. We have already observed that a quasivariety is an axiomatic prevariety. Let
X be an axiomatic prevariety. Certainly X is non-empty by Definition 3. Moreover,
X is universally axiomatizable by Lemma 3. Since X is a prevariety, it is closed under
cartesian products, again by Definition 3. Thus X is a quasivariety by Lemma 6.

In general, given two groups G and H, there are no known criteria (other than the
definition) to determine whether or not G and H are elementarily equivalent. How-
ever, Szmielew [12] has completely characterized elementary equivalence of abelian
groups. Recall that a group G has finite exponent if there is a positive integer n such
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that xn ¼ 1 for all x A G and G has infinite exponent otherwise. Szmielew distinguishes
between two types of linear independence in an abelian group A (which we shall write
additively). If m is a positive integer and ðaiÞi A I is a sequence of elements of A con-
taining only finitely many non-zero terms, then ðaiÞi A I is linearly independent modulo

m provided that

X
i A I

niai ¼ 0) ni 1 0 ðmodmÞ

for all i A I .
The sequence ðaiÞi A I is linearly independent modulo m in the stronger sense provided

that

X
i A I

niai A mA ) ni 1 0 ðmodmÞ

for all i A I .
Szmielew then defines, for each prime p and each positive integer k, three quanti-

ties rðiÞ½ p; k�ðAÞ, i ¼ 1; 2; 3, each of which is either a non-negative integer or the
symboly, as follows:

(1) rð1Þ½ p; k�ðAÞ is the maximum number (if it exists) of elements of order pk which
are linearly independent modulo pk;

(2) rð2Þ½ p; k�ðAÞ is the maximum number (if it exists) of elements linearly indepen-
dent modulo pk in the stronger sense;

(3) rð3Þ½ p; k�ðAÞ is the maximum number (if it exists) of elements of order pk which
are linearly independent modulo pk in the stronger sense.

Theorem A (Szmielew [12]). Let A and B be abelian groups. Then A and B are ele-

mentarily equivalent if and only if the following two conditions are satisfied:

(1) either A and B both have finite exponent or they both have infinite exponent;

(2) for all primes p and positive integers k, one has rðiÞ½ p; k�ðAÞ ¼ rðiÞ½ p; k�ðBÞ for

i ¼ 1; 2; 3.

If G is a group, let ThEðGÞ denote the set of all universal sentences of L true in G.
(Note that uclðGÞ ¼ MðThEðGÞÞ.) We shall say that two groups G and H are univer-

sally equivalent provided that ThEðGÞ ¼ ThEðHÞ, that is, they have the same univer-
sal theory. Since the negation of a universal sentence is logically equivalent to an
existential sentence and vice-versa, two groups have the same universal theory if and
only if they have the same existential theory. We may write the matrix of an existential
formula in disjunctive normal form; that is, every existential sentence of L is logically
equivalent to one of the form bx ð4

i
jiðxÞÞ where jiðxÞ is a conjunction

5
j

ðpijðxÞ ¼ 1Þ5 5
k

ðqikðxÞ0 1Þ
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of equations and inequations. But bx ð4
i
jiðxÞÞ is logically equivalent to 4

i
bx ðjiðxÞÞ

and a disjunction will hold if and only if at least one of the disjuncts is true. Thus two
groups G and H will be universally equivalent if and only if every finite system

piðxÞ ¼ 1 ð1c ic IÞ

qjðxÞ0 1 ð1c jc JÞ

of equations and inequations in finitely many variables x ¼ ðx1; . . . ; xnÞ has a solu-
tion in G if and only if it has a solution in H.

3 Square-like groups

In this section we introduce square-like groups, proving that the class of discrimi-
nating groups is a proper subclass of the class of square-like groups and further
that the class of discriminating groups is non-axiomatic. We then prove that the class
of square-like groups is axiomatic and that a group is square-like if and only if it
is universally equivalent to a discriminating group. Before introducing square-like
groups we review some of the material on discriminating groups. Baumslag, Myas-
nikov and Remeslennikov proved the following result.

Theorem B ([2]). The group G is discriminating if and only if G discriminates G � G.

It follows then that G being isomorphic to G � G is a su‰cient condition for G to
be discriminating. From Theorem B the following can be deduced.

Theorem C ([6]). If G is discriminating, then G and G � G have the same universal

theory.

Motivated by this theorem we define the notion of a square-like group.

Definition 7. A group G is termed square-like if G and G � G have the same universal
theory, that is, if ThEðGÞ ¼ ThEðG � GÞ.

It follows from Theorem C that every discriminating group is square-like. Further,
since G embeds in G � G, every universal sentence true in G � G is automatically true
in G. Thus a necessary and su‰cient condition for a group G to be square-like is that
every universal sentence true in G must also be true in G � G. In [6] the following was
proved, which tied together the notions of discrimination, being equationally noe-
therian, universal closure and quasivariety.

Theorem D ([6]). Let G be a finitely generated, equationally noetherian group. Then G

is discriminating if and only if uclðGÞ ¼ qvarðGÞ.

We now give our first main result.
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Theorem 2. The class of discriminating groups is a proper subclass of the class of square-

like groups. Further the class of discriminating groups is non-axiomatic.

Proof. From Theorem C it follows that the class of discriminating groups is contained
in the class of square-like groups. To complete the proof we first present an example
of a square-like group which is not a discriminating group. We then give an example
of a discriminating group that is elementarily equivalent to a non-discriminating
group. From this second example it follows that the class of discriminating groups is
not axiomatic. To construct these examples we first need the following lemma which is
of interest in its own right.

Lemma 7. The class of discriminating groups is closed under forming reduced products

but not under direct unions.

Proof. Let I be a non-empty set and let ðGiÞi A I be a family of discriminating groups
indexed by I. Suppose D is a proper filter on I and let

Q
i A I Gi=D be a reduced

product (see [5] or [7]). We must show that
Q

i A I Gi=D discriminates ð
Q

i A I Gi=DÞ �
ð
Q

i A I Gi=DÞ. It su‰ces to show that
Q

i A I Gi=D discriminates
Q

i A I ðGi � GiÞ=D. Let
½ð f1; g1Þ�D; . . . ; ½ð fn; gnÞ�D be finitely many non-trivial elements of

Q
i A I ðGi � GiÞ=D.

Then for all j with 1c jc n,

fi A I : ð fjðiÞ; gjðiÞÞ ¼ 1g B D:

For each i A I , let JðiÞ ¼ f j : ð fjðiÞ; gjðiÞÞ0 1g. If JðiÞ is empty, let ji : Gi � Gi ! Gi

be projection onto the first coordinate. Otherwise, choose ji : Gi � Gi ! Gi such that
jið fjðiÞ; gjðiÞÞ0 1 for all j A JðiÞ. This is possible since each Gi is discriminating. We
then get an induced map

�j :
Y
i A I

ðGi � GiÞ=D !
Y
i A I

Gi=D:

We claim that �j does not annihilate ½ð fj ; gjÞ�D for j ¼ 1; 2; . . . ; n. Suppose that this
is false. Fix j and write ½ð f ; gÞ�D for ½ð fj; gjÞ�D. If �j annihilates ½ð f ; gÞ�D, then

fi A I : jið f ðiÞ; gðiÞÞ ¼ 1g A D:

But we claim that

fi A I : jið f ðiÞ; gðiÞÞ ¼ 1g

coincides with

fi A I : ð f ðiÞ; gðiÞÞ ¼ 1g:
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For if ð f ðiÞ; gðiÞÞ ¼ 1, then certainly jið f ðiÞ; gðiÞÞ ¼ 1, while, on the other hand, if
ð f ðiÞ; gðiÞÞ0 1 then j A JðiÞ and jið f ðiÞ; gðiÞÞ0 1 by the choice of ji. But then

fi A I : jið f ðiÞ; gðiÞÞ ¼ 1g ¼ fi A I : ð f ðiÞ; gðiÞÞ ¼ 1g

does not lie in D; so jð½ð f ; gÞ�DÞ0 1, contrary to our assumption. Thus
Q

i A I Gi=D
discriminates

Q
i A I ðGi � GiÞ=D and

Q
i A I Gi=D is discriminating whenever Gi is dis-

criminating for all i A I . In other words, the class of discriminating groups is, as
claimed, closed under reduced products. (In particular, it is closed under cartesian
products.). We must now show that it is not closed under direct unions. To do this we
need the following theorem of Baumslag, Myasnikov and Remeslennikov.

Theorem E ([2]). Let A be a torsion abelian group. Suppose that for each prime p, the
p-primary component of A modulo its maximal divisible subgroup contains no non-

trivial element of infinite p-height. Then A is discriminating if and only if the following

two conditions are satisfied for each prime p:

(1) for every positive integer k, rð1Þ½ p; k�ðAÞ is either 0 or y;

(2) the rank of the maximal divisible subgroup of the p-primary component of A is

either zero or infinite.

Here the rank of a divisible abelian p-group is the maximal number of direct sum-
mands isomorphic to the quasicyclic group Zpy ; moreover, the p-height of an element
a of an abelian p-group A is (with respect to A) the maximal positive integer n, if it
exists, such that the equation pnx ¼ a has a solution in A.
Now for each positive integer k let Mk be a free module of countably infinite rank

over the ring ðZ=2kZÞ. Let M be the direct sum of the abelian groups Mk as k varies
over the positive integers. Let D ¼ Z2y be a rank 1 divisible 2-group. Let A be the
direct sum M lD. Then A=DGM is a torsion abelian 2-group containing no non-
trivial elements of infinite 2-height. By Theorem E, A is not discriminating since its
maximal divisible subgroup D has rank 1. (It clearly su‰ces to restrict ourselves to
the prime 2 since, if p is an odd prime, the p-primary component of A is 0.) But A

is the direct union of the family Ak ¼ M l ðZ=2kZÞ of subgroups as k varies over
the positive integers. Each Ak is discriminating, since clearly Ak GM for all k, and
M GM � M is discriminating. Thus the class of discriminating groups is not closed
under direct unions.
From this last proof we can complete part of the proof of Theorem 2. By Szmielew’s

Theorem (Theorem A), A and M as given above are elementarily equivalent since
they both have infinite exponent and, if p ¼ 2, then rðiÞ½ p; k�ðAÞ ¼ rðiÞ½ p; k�ðMÞ ¼ y
for i ¼ 1; 2; 3 and for all k and, if p0 2, then rðiÞ½ p; k�ðAÞ ¼ rðiÞ, ½ p; k�ðMÞ ¼ 0 for
i ¼ 1; 2; 3 and for all k. Thus the discriminating groupM is elementarily equivalent to
the non-discriminating group A. It follows that the class of discriminating goups is
not axiomatic.
To show that the class of discriminating groups is proper in the class of square-like

groups we need the following result.
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Lemma 8. The class of square-like groups is closed under reduced products and direct

unions.

Proof. Let I be a non-empty set and let ðGiÞi A I be a family of square-like groups
indexed by I. Let D be a proper filter on I. For each i A I , every universal sentence
true in Gi is also true in Gi � Gi. Hence, by Lemma 2, Gi � Gi embeds in an ele-
mentary extension �Gi of Gi. That induces an embedding

Q
i A I ðGi � GiÞ=D ,!Q

i A I
�Gi=D. Thus every universal sentence true in

Q
i A I

�Gi=D must also be true inQ
i A I ðGi � GiÞ=D. But

Q
i A I

�Gi=D is elementarily equivalent to
Q

i A I Gi=D. Hence
every universal sentence true in

Q
i A I Gi=D must also be true in

Q
i A I ðGi � GiÞ=D. ButQ

i A I ðGi � GiÞ=D is isomorphic to ð
Q

i A I Gi=DÞ � ð
Q

i A I Gi=DÞ. Thus every universal
sentence true in

Q
i A I Gi=D must also be true in its direct square. It follows that the

reduced product
Q

i A I Gi=D is square-like whenever each Gi is square-like. Therefore
the class of square-like groups is closed under reduced products.
Now suppose that G is the direct union of a familyF of square-like groups. Let G

be the set of all H � H with H A F. Clearly G � G is the direct union of the family G
of subgroups. Now let j be a universal sentence of L true in G. Then j must be true
in every subgroup H A F. But each such H is square-like; hence j is true in H � H

for all H � H A G. Universal sentences are easily seen to be preserved in direct
unions. Therefore j is true in G � G. Thus every universal sentence true in G must
also be true in G � G, i.e., the class of square-like groups is closed under direct unions.
It follows also that the class of square-like groups is closed under cartesian products
and ultraproducts.

From this we can give the example of a square-like group which is not discrimi-
nating. Consider the non-discriminating group A ¼ M lD given in the example
prior to Lemma 8. This group was the direct union of the family Ak ¼ M l ðZ=2kZÞ
of discriminating (hence square-like) subgroups and therefore is itself square-like.
This completes the proof of Theorem 2.
In contrast to the class of discriminating groups our next result shows that the class

of square-like groups is indeed axiomatic.

Theorem 3. The class of square-like groups is axiomatic.

Proof. In view of Lemma 1 it will su‰ce to show that the class of square-like groups
is closed under ultraproducts and elementary equivalence. However Lemma 8 showed
that the class of square-like groups is closed not only under ultraproducts but even
under arbitrary reduced products. Thus it will su‰ce to show that the class of square-
like groups is closed under elementary equivalence.
So suppose that G is square-like and H is elementarily equivalent to G. Then, by

Corollary 1, H � H is elementarily equivalent to G � G. In particular,

ThEðHÞ ¼ ThEðGÞ ¼ ThEðG � GÞ ¼ ThEðH � HÞ;

so that H is also square-like.
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We note that although universal sentences are involved in the definition of square-
like groups, this class does not have a set of universal axioms. If it did it would be
closed under subgroups. Let V be a vector space of countably infinite dimension over
the two element field. Then V (viewed as an abelian group) is discriminating (hence
square-like) since V GV � V . The subgroups of V of order 2 are not square-like
since, for example, the universal sentence Ex; y; z ððx ¼ yÞ4 ðx ¼ zÞ4 ðy ¼ zÞÞ is
true in Z=2Z but false in Z=2Z � Z=2Z. (A similar argument shows that no non-
trivial finite group can be square-like.) However, since the class of square-like groups
is closed under direct unions, it does have, by a theorem of Łoś and Susko [9], a set of
so-called universal–existential axioms.
Although the previous two theorems distinguish the class of square-like groups

from its subclass of discriminating groups, the next result shows that they coincide in
the presence of a finite presentation.

Theorem 4. Let G be a finitely presented group. Then G is discriminating if and only if

it is square-like.

Proof. If G is discriminating, it is square-like by Theorem C. Now we suppose that G
is square-like and we must show that it is discriminating.
Let

G ¼ hx1; . . . ; xn;R1; . . . ;Rmi

be a finite presentation for G where Ri ¼ Riðx1; . . . ; xnÞ are words in x1; . . . ; xn. To
show that G is discriminating we must show that G discriminates G � G.
A finite presentation for G � G is then given by

G � G ¼ hx1; . . . ; xn; y1; . . . ; yn;R1ðx1; . . . ; xnÞ ¼ 1; . . . ;Rmðx1; . . . ; xnÞ ¼ 1;

R1ðy1; . . . ; ynÞ ¼ 1; . . . ;Rmðy1; . . . ; ynÞ ¼ 1; ½xi; yj� ¼ 1; i; j ¼ 1; . . . ; ni:

Now suppose that W1; . . . ;Wk are non-trivial elements of G � G. Then each Wi is
given by a word Wiðx1; . . . ; xn; y1; . . . ; ynÞ in the generators of G � G. Consider now
the existential sentence

bx1; . . . ; xn; y1; . . . ; yn

��
5
m

i¼1
Riðx1; . . . ; xnÞ ¼ 1Þ5

�
5
m

i¼1
Riðy1; . . . ; ynÞ ¼ 1

�

5

�
5
i; j

½xi; yj� ¼ 1
�
5

�
5
k

i¼1
Wiðx1; . . . ; xn; y1; . . . ; ynÞ0 1

��
:

This existential sentence is clearly true in G � G. Since G is square-like, G and G � G

have the same universal theory. Hence they have the same existential theory and
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therefore the above existential sentence is true in G. Therefore there exists elements
a1; . . . ; an; b1; . . . ; bn in G such that Riða1; . . . ; anÞ ¼ 1 for i¼ 1; . . . ;m; Riðb1; . . . ; bnÞ ¼
1 for i ¼ 1; . . . ;m; ½ai; bj� ¼ 1 for i; j ¼ 1; . . . ; n and Wiða1; . . . ; an; b1; . . . ; bnÞ0 1 for
i ¼ 1; . . . ; k. The map from G � G to G given by mapping xi to ai and yi to bi for
i ¼ 1; . . . ; n defines a homomorphism for which the images of W1; . . . ;Wk are non-
trivial. Hence G discriminates G � G and therefore G is discriminating.

An argument similar to the proof of Theorem 3 shows that the class of all groups
H for which there exists a discriminating group GH elementarily equivalent to H is
axiomatic. Clearly, this class is the least axiomatic class containing the discriminating
groups. We now show that being square-like is equivalent to being universally equiv-
alent to a discriminating group.

Theorem 5 (Main Theorem). Let G be a group. Then the following three conditions are

equivalent:

(1) G is square-like;

(2) uclðGÞ ¼ qvarðGÞ;

(3) G is universally equivalent to a discriminating group.

Proof. ð1Þ ) ð2Þ Assume that G is square-like. Since 1cG, every universal sentence
true in G must be true also in the trivial group 1. Hence 1 A uclðGÞ. Now let
H;K A uclðGÞ. Then by Lemma 2 there are elementary extensions GH and GK of G

such that H is embeddable in GH and K is embeddable in GK . Then H � K is em-
beddable in GH � GK . By Corollary 1, GH � GK is elementarily equivalent to G � G.
Hence ThEðGH � GKÞ ¼ ThEðG � GÞ. But ThEðG � GÞ ¼ ThEðGÞ since G is square-
like. Hence every universal sentence true in G must also be true in H � K . It fol-
lows that uclðGÞ is closed under direct products of two factors. By Lemma 5, uclðGÞ
is closed under arbitrary cartesian products. Then, by Lemma 6, uclðGÞ is a quasi-
variety, which must clearly coincide with the least quasivariety qvarðGÞ containing
G.

ð2Þ ) ð3Þ Assume that uclðGÞ ¼ qvarðGÞ. Let I be an infinite index set. Since
G A qvarðGÞ, we must have GI A qvarðGÞ ¼ uclðGÞ. Hence every universal sentence
true in G must also be true in GI . But every universal sentence true in GI must also
be true in G since G embeds in GI , It follows that ThEðGÞ ¼ ThEðGI Þ. Finally note
that GI is discriminating since GI � GI is isomorphic to GI .

ð3Þ ) ð1Þ Suppose that H is a discriminating group and ThEðGÞ ¼ ThEðHÞ. Since
H is discriminating it is square-like and thus uclðHÞ ¼ qvarðHÞ by the first implication
of this proof. Then G A uclðHÞ ¼ qvarðHÞ implies that

G � G A qvarðHÞ ¼ uclðHÞ ¼ uclðGÞ:

Hence every universal sentence true in G must also be true in G � G and so G is
square-like.

Square-like groups 377



Corollary 3. Let G be a finitely generated, equationally noetherian group. Then G is

square-like if and only if it is discriminating.

4 Abelian groups

We give su‰cient conditions for an abelian group to be square-like if and only if it is
discriminating. Throughout this section we assume that our groups are abelian. We
start with the following:

Definition 8. An abelian group A is universally standardizable or US provided that for
each prime p and positive integer k, rð1Þ½ p; k�ðAÞ is either zero or infinite.

Next we need some terminology from [8, p. 26].

Definition 9 ([8]). The skeleton of a group G is the class of all finitely generated groups
that can be embedded in G.

Lemma 9. Let A be a US-group.

(1) If rð1Þ½ p; k�ðAÞ ¼ y, then for all integers n with 1c nc k,

rð1Þ½ p; n�ðAÞ ¼ y:

(2) If rð1Þ½ p; k�ðAÞ ¼ 0, then for all integers n with nd k,

rð1Þ½ p; n�ðAÞ ¼ 0:

Proof. (1) Suppose that ða1; a2; . . .Þ is an infinite sequence of elements of A of order
pk which are linearly independent modulo pk. Let n be an integer with 1c nc k.
Then we claim that the sequence ðpk�na1; p

k�na2; . . .Þ is linearly independent modulo
pn; so, in particular, its terms are distinct. (Note that pk�nai has order pn since ai has
order pk.) Suppose that this is false. Then there are integers n1; n2; . . . ; nN , not all
divisible by pn, such that n1p

k�na1 þ 	 	 	 þ nNpk�naN ¼ 0. But this contradicts the
assumption that ða1; a2; . . .Þ are linearly independent modulo pk because not all of the
integers n1p

k�n; . . . ; nNpk�n are divisible by pk. The contradiction shows, as claimed,
that the sequence ðpk�na1; p

k�na2; . . .Þ is linearly independent modulo pn. Assertion
(1) follows. We note that (2) follows from (1) since A is US.

We note that if an abelian group A is not finitely generated, then its torsion sub-
goup T is not necessarily a direct summand in A; moreover, T is the direct sum
0

p
Tp where Tp is the p-primary component of A.

Definition 10. Let A be a US-group. Then its universal standardization is the abelian
group SEðAÞ constructed as the direct sum T lF of a torsion abelian group T and a
free abelian group F as follows: F ¼ 0 if A contains no elements of infinite order;
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otherwise, F is free abelian of rank the smaller of r and @0 where

r ¼ maxfrankðA0Þ : A0 is free abelian and A0cAg:

For each prime p let Ap be the p-primary component of A and let Tp be the p-
primary component of T. Let Tp ¼ 0 if Ap ¼ 0. Assume that Ap 0 0. If Ap has finite
exponent pn, then Tp is the direct sum of a countable infinity of copies of the cyclic
group Z=pnZ of order pn; otherwise, Tp is the direct sum of a countable infinity of
copies of the quasicyclic group Zpy .

Theorem F ([2]). Let A be an abelian group with torsion subgroup T.

(1) If A is discriminating, then T is discriminating.

(2) If T is a direct summand in A, then A is discriminating if and only if T is discrimi-

nating.

Theorem 6. Let A be an abelian group. Then A is square-like if and only if A is US.

Proof. Suppose first that A is not US. Then for some prime p and positive integer k

we have

0 < rð1Þ½ p; k�ðAÞ ¼ n < y:

Then A satisfies the following universal sentence but A � A does not:

Ex1; . . . ; xn; xnþ1

�
4

m00

�Xnþ1
i¼1

mixi ¼ 0
��

:

Here m ¼ ðm1; . . . ;mnþ1Þ varies over all ðn þ 1Þ-tuples of integers mi where 0c
mi < pk for i ¼ 1; 2; . . . ; n þ 1, with the exception of the zero vector 0 ¼ ð0; 0; . . . ; 0Þ.
It follows that if A is not US, then A is not square-like. Now suppose that A is US.
By the construction of SEðAÞ the groups A and SEðAÞ have the same skeleton. But a
finite system of equations and inequations

Xn

k¼1
cikxk ¼ 0 ð1c ic IÞ

Xn

k¼1
djkxk 0 0 ð1c jc JÞ

(in finitely many variables) will have a solution in an abelian group B if and only if it
has a solution in some finitely generated subgroup B0 of B. It follows that A and
SEðAÞ have the same universal theory. Now T is a direct summand in SEðAÞ and T is
discriminating since T GT � T by the very construction of SEðAÞ. It follows from
Part (2) of Theorem F that SEðAÞ is discriminating. Thus if A is US, then A is uni-
versally equivalent to a discriminating group. But then A is square-like by Theorem
5. Hence A is square-like if and only if A is US.
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Corollary 4. Let A be an abelian group with torsion subgroup T. Then A is square-like

if and only if T is square-like.

Proof. This is obvious since clearly, for all primes p and positive integers k,
rð1Þ½ p; k�ðAÞ ¼ rð1Þ½ p; k�ðTÞ.

Corollary 5. Let A be a torsion abelian group. For each prime p let Ap be the p-primary

component of A. Suppose that for all primes p, Ap has finite exponent. Then A is

square-like if and only if A is discriminating.

Proof. Since every discriminating group is square-like we assume that A is square-like
and show that it is discriminating. First of all, for each prime p, the p-primary com-
ponent Ap of A has maximal divisible subgroup 0. This is so since if Ap contains even
a single copy of the quasicyclic group Zpy then Ap will have infinite exponent, con-
trary to hypothesis. Hence Ap modulo its maximal divisible subgroup is just Ap itself.
Now assume, to deduce a contradiction, that a0 0 is an element of Ap having infinite
p-height. Let the exponent of Ap be pN . Then the equation pNx ¼ a must have a
solution (say x ¼ b) in Ap. But b A Ap and pNb ¼ a and pNb ¼ a0 0 contradicts the

assumption that Ap has exponent pN . The contradiction shows, as claimed, that Ap

contains no non-trivial element of infinite p-height. We are now in a position to apply
the criteria of Theorem E. Since A is square-like, Theorem 6 above shows that, for

each prime p and positive integer k, rð1Þ½ p; k�ðAÞ is either 0 ory. Moreover we have
already observed that the rank of the maximal divisible subgroup of Ap is zero for
all primes p. hence by Theorem E, A is discriminating.

5 Open questions

(1) Is every square-like group a direct union of discriminating groups?

(2) Is the class of square-like groups the least axiomatic class containing the discrimi-
nating groups? Equivalently, must every square-like group be elementarily equiva-
lent to a discriminating group?

(3) Is every finitely generated square-like group discriminating?
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