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Didymosphenia geminata: Algal blooms in oligotrophic streams
and rivers

P. V. Sundareshwar,1 S. Upadhayay,1 M. Abessa,1 S. Honomichl,1 B. Berdanier,2

S. A. Spaulding,3 C. Sandvik,1 and A. Trennepohl1

Received 24 December 2010; revised 15 April 2011; accepted 18 April 2011; published 28 May 2011.

[1] In recent decades, the diatom Didymosphenia geminata
has emerged as nuisance species in river systems around
the world. This periphytic alga forms large “blooms” in
temperate streams, presenting a counterintuitive result: the
blooms occur primarily in oligotrophic streams and rivers,
where phosphorus (P) availability typically limits primary
production. The goal of this study is to examine how high
algal biomass is formed under low P conditions. We reveal
a biogeochemical process by which D. geminata mats con-
centrate P from flowing waters. First, the mucopolysaccaride
stalks of D. geminata adsorb both iron (Fe) and P. Second,
enzymatic and bacterial processes interact with Fe to increase
the biological availability of P. We propose that a posi-
tive feedback between total stalk biomass and high growth
rate is created, which results in abundant P for cell division.
The affinity of stalks for Fe in association with iron‐
phosphorus biogeochemistry suggest a resolution to the
paradox of algal blooms in oliogotrophic streams and rivers.
Citation: Sundareshwar, P. V., S. Upadhayay, M. Abessa,
S. Honomichl, B. Berdanier, S. A. Spaulding, C. Sandvik, and
A. Trennepohl (2011), Didymosphenia geminata: Algal blooms in
oligotrophic streams and rivers, Geophys. Res. Lett., 38, L10405,
doi:10.1029/2010GL046599.

1. Introduction

[2] Periphyton growth in flowing waters is typically stim-
ulated by enrichment of nitrogen, phosphorus (P), or both
nutrients [Dodds et al., 2002]. At regional to global scales,
nutrient inputs, primarily from anthropogenic sources, lead to
eutrophic conditions that favor algal blooms with undesirable
consequences [Schindler et al., 2008; Galloway et al., 2008].
Since the mid‐1980’s, the diatom Didymosphenia geminata
has dramatically expanded its range by colonizing oligotro-
phic rivers worldwide [Bothwell et al., 2009; Blanco and
Ector, 2009; Kilroy et al., 2009; Kirkwood et al., 2007;
Kawecka and Sanecki, 2003]. In New Zealand, D. geminata
spread to at least 32 watersheds on the South Island since
2004 [Kilroy et al., 2009], resulting in 10 and 6 fold increases
in periphyton ash free dry mass and chlorophyll a, respec-
tively. Studies of rivers in North America report similarly
high biomass [Kirkwood et al., 2007; Kumar et al., 2009].
Blooms of D. geminata in oligotrophic streams and rivers

present a counterintuitive result, because a bloom implies
access to sufficient nutrients to sustain growth. The goal of
this study is to examine how high algal biomass is attained
under low P conditions.
[3] Attached algae, including attached diatoms, are able to

exploit phosphorus through a variety of means [Pringle,
1990] including use of enzymes such as alkaline phospha-
tase [Ellwood and Whitton, 2007] and luxury consumption
and storage [Kilham et al., 1977]. Furthermore, heterotrophic
bacteria associated with the attached algae are primary drivers
of respiration, nutrient cycling and decomposition in stream
ecosystems [Ardon and Pringle, 2007]. Not only do hetero-
trophic bacteria control physiological processes, they have
the ability to influence hydrologic exchange of material
available at the scale of the biofilm within large river beds
[Battin and Sengschmitt, 1999]. Most of the biomass of the
benthic mats formed by D. geminata is attributed to muco-
polysaccharide stalks. The stalks are composed of sulfated
polysaccharides, urionic acid and proteins with ionic cross‐
bridging with calcium (Ca2+) [Gretz, 2008], and adhere the
diatom cells to substrates in high flow conditions, with recent
investigations suggesting that the stalks are involved in effi-
cient nutrient cycling [Kirkwood et al., 2007], including
direct uptake of P [Ellwood and Whitton, 2007]. While there
is a rich literature on the role of biofilms and nutrients in algal
colonization and succession [Korte and Blinn, 1983; Pringle,
1990; Stevenson et al., 1991] there has been no investigation
of the role of bacterial biofilms on the formation of algal
blooms in low nutrient rivers.

2. Materials and Methods

2.1. Site Description

[4] The study was conducted in Rapid Creek ‐ an oligo-
trophic montane stream in western South Dakota, where
D. geminata blooms were first observed in 2002. This creek
regularly experiences extensive D. geminata blooms, with
30–100% coverage of the streambed over a 5–10 km reach,
for over four months of the year [Larson and Carreiro, 2008]
despite low nutrient concentrations in surface waters. The
total dissolved P in creek water is very low with total Nitro-
gen (N):P molar ratio near 30:1. Rapid Creek has a regulated
flow and receives water from the hypolimnion of Pactola
Reservoir.

2.2. Water Quality and Mat Nutrient Content

[5] Water quality of Rapid Creek was measured using
standard wet chemical technique [Lachat Instruments, 2010].
Parameters measured included: Soluble Reactive Phosphorus
(SRP), total P, total N, NH4

+, Nitrate‐Nitrite, total Kjeldahl
Nitrogen, Silica, SO4

2−, soluble sulfides (S2−), and total Fe

1Institute of Atmospheric Sciences, South Dakota School of Mines
and Technology, Rapid City, South Dakota, USA.

2Deparment of Civil and Environmental Engineering, South Dakota
State University, Brookings, South Dakota, USA.

3INSTAAR, U.S. Geological Survey, Boulder, Colorado, USA.

Copyright 2011 by the American Geophysical Union.
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(TFe). pH, and dissolved oxygen (DO) in creek water were
measured in situ using a Hydrolab.Didymosphenia geminata
mats were assayed for TP, TFe after wet digestion, and TN,
Total Carbon (C) content of the mats was assayed on a Flash
E1112 CHNSO Thermo Finigan Elemental Analyzer.

2.3. P and Fe Adsorption in D. geminata

[6] P and Fe adsorption in the mats was experimentally
tested by incubating 3 gm of washed (in deionized water) and
unwashed mats from Rapid Creek in solutions containing
1000 mg/L P and 250 mg/L Fe, respectively. All incubations
were poisoned to minimize biological uptake of P and Fe.
Samples spikedwith P, Fe, or bothwere rinsedwith deionized
water to remove unincorporated P and Fe prior to further
analyses. TP and TFe on the mats were subsequently mea-
sured using wet digestion techniques [Lachat Intruments,
2010].

2.4. Scanning Electron Microscope (SEM) Examination

[7] An SEM examination and spot elemental analyses
of washed D. geminata stalks that were spiked with Fe
and P, and unspiked controls, was conducted with a Zeiss
Supra40VP variable pressure field emission SEM with a
PGT energy‐dispersive X‐ray (EDX) system on a glass slide
mount under 15 keV accelerating voltage, 12 Pa chamber
pressure VP; a 35° take‐off angle, with a live time of around
115 seconds and an SEM magnification of 2380X.

2.5. Presence of Iron and Sulfate Reducers

[8] Presence of iron and sulfate reducers in interstitial water
of D. geminata mats was confirmed by expelling the inter-
stitial water from freshly collected D. geminata mats from
Rapid Creek, SD. Interstitial water from each replicate mat
was used to inoculate media singularly enriched in Fe3+

[Lovley and Phillips, 1986] or SO4
2− [Sani et al., 2001].

Bacterial growth was measured as an increase in total protein
concentration [Sani et al., 2002, 2005] in live incubations
over killed controls. Presence of reduced Fe [Sani et al.,
2002] and soluble sulfides [Sani et al., 2005] under anaero-
bic incubation confirmed the presence of iron and sulfate
reducing bacteria.

3. Results and Discussion

[9] Total P, total N and total Fe of D. geminata mats
from Rapid Creek are presented in Table 1. At 1,120 and
93,303mg/Kg, the concentrations of P and Fe are comparable
to those in lacustrine sediments [Holcomb, 2002] and those of
non‐marine mineral wetlands with high P‐sorption capacity
[Sundareshwar and Morris, 1999]. The potential for the
stalks to sequester Fe and P from ambient water was quan-
tified by spiking washed (in deionized water) and unwashed
stalks with Fe and P, then measuring the adsorbed Fe and P
content (Figure 1). Particulate mineral matter, including Fe,
within the mat was reduced by washing the stalks (Figure 1a).

Spiking the washed and unwashed stalks with Fe resulted in
Fe adsorption to the stalks, with greater amounts adsorbed to
the unwashed stalks. The washed and unwashed stalks also
adsorbed significant amounts of P (Figure 1b), with a greater
affinity for P in the presence of Fe (Figure 1b). Spot elemental
analyses of the stalks revealed that Fe and P are co‐localized
(see Figure S1 of the auxiliary material), likely by sorbed Fe
acting as a metal bridge between the stalk and dissolved P.1

We interpret these results to mean that soluble Fe is adsorbed
onto the stalk, where oxidized conditions in the surface
layer facilitate the formation of Fe‐oxyhydroxide. In this
amorphous form, Fe has a strong affinity for P, and as a
result, effectively strips P from the surrounding water. The

Table 1. Chemical Characteristics of Water and Algal Mats From Rapid Creek, SD (mean ± s.e.m., n = 3)a

TP SRP TN SO4
2− Si Fe DO pH *S2−

Water (mg/L) 0.02 (0.008) 0.004 (0.0006) 0.31 (0.09) 42.55 (4.01) 11.7 (0.26) 0.31 (0.07) 9.5 (1.13) 7.8 (0.3) <0.01
Algal Mat (mg/Kg) 1120 (135) ND 3000 (300) ND ND 93303 (10203) ND ND 0.63 mg/L (0.02)

aTP = total P, SRP = Soluble Reactive Phosphorus, TN = total N, Silica (Si), DO = dissolved oxygen, ND = No data. *Soluble sulfide (S2−) concentrations
in the algal mats were measured after incubating the mats in creek water for 21 days.

Figure 1. (a) Total Fe and (b) total P concentrations (mean ±
s.e.m. n = 3) of D. geminata stalks that were either untreated
(U), washed to remove particulate matter (W), spiked with
Fe (UFe and WFe), inorganic P (UP and WP), or both (UFeP
and WFeP). Means of treatments were significantly different
at a ≤ 0.05, as indicated by different letters.

1Auxiliary materials are available in the HTML. doi:10.1029/
2010GL046599.
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co‐occurrence of P and Fe is consistent with other studies on
mineral sediments [Sundareshwar and Morris, 1999; Paludan
and Morris, 1999]. Thus, the mucopolysaccaride stalks
function to concentrate P and Fe. Unlike the periphyton of
Everglades wetlands where P is rapidly taken into the bio-
logical pool (86%) [Scinto and Reddy, 2003], P sorption in
D. geminata mats is primarily an abiotic process, rather than
direct biological uptake.
[10] We propose that adsorbed P becomes bioavailable

through the following biogeochemical processes within the
mat biofilm. As the mats develop, new stalks are produced at
the surface and older stalks with bound Fe and P are displaced
to the inner regions of the mat. In Rapid Creek, thick (2–4 cm)
mats develop a redox gradient, in which the surface is oxi-
dized as a result of photoautotrophy, while the inner and
bottom regions of the mats are reduced, a feature observed
in other microbial mats [Pierson et al., 1999; Roden et al.,
2004; Baumgartner et al., 2006]. In the absence of oxygen,
microbes can utilize other electron acceptors such as oxidized
Fe (Fe3+) and SO4

2− for respiration, resulting in the generation
of reduced Fe (Fe2+) and soluble sulfides (S2−), respectively.
[11] We tested for the evidence of the proposed process

by determining the presence of Fe3+ and SO4
2− reducing

microbes.We observed significantly greater microbial growth,
as compared to sterilized (killed) controls, when interstitial
water from the mats was incubated anaerobically in media
singularly enriched with Fe3+ or SO4

2− as the sole electron
acceptor [Pierson et al., 1999; Roden et al., 2004]. For Fe3+

rich media, total protein concentration (mean ± s.e.m.), was
significantly greater in live incubation than killed controls
(90.02 mg/L ± 2.32 vs. 21.38 ± 2.68, n = 3, p < 0.0001). The
presence of Fe3+ reducers was confirmed by monitoring the
production of reduced Fe (Fe2+), which was significantly
greater in live incubations (1.95 mg/L ± 0.33 vs. 0.2 ± 0.009,
n = 3, p = 0.0058). When SO4

2− is abundant (Table 1),
microbial sulfate reduction can dominate anaerobic respira-
tion resulting in production of soluble sulfides (S2−) within
the mat. The presence of SO4

2− reducers in the mat was sim-
ilarly confirmed by monitoring bacterial growth and sulfide
production in media where SO4

2− was provided as the sole
electron acceptor. Total protein and soluble sulfide concen-
trations were significantly greater in live incubations versus
killed controls (total protein: 89.63 ± 1.33 vs. 26.80 ± 7.13,
n = 3, p < 0.001; S2−: 5.6 mg/L ± 0.22 vs. 0.23 ± 0.06, n = 3,
p < 0.0001). In the reduced zones of the mats both reduced
Fe and sulfides are present [Fe2+ (0.94 mg/L ± 0.04; n = 3),
S2− (0.27 mg/L ± 0.01; n = 3)], because of an abundance
of Fe on the mats and SO4

2− in the creek water (Table 1).
Reduction of Fe either directly by Fe3+ reducing microbes or
as a result of changes in redox conditions in the mats due to
the production of sulfides from microbial sulfate reduction,
results in release of bound P from the Fe‐oxyhydroxide pool.
Additionally, when soluble sulfides are present, they interact
with reduced Fe to form iron monosulfides FeS (Figure 2b)
effectively competing with P for Fe and retarding the
re‐oxidation of Fe2+ to Fe3+. This process is well documented
in benthic systems where redox gradients develop across
the sediment water interface, but was considered unlikely
to occur in lotic habitats where hydrodynamic conditions
are generally unfavorable for the development of such redox
gradients. Our study demonstrates that the redox driven
Fe‐S‐P coupling also occurs in lotic habitats, when inter-

actions between D. geminata mats and the hydrodynamic
environment results in very low velocities around the mat
where redox stratification can then occur [Larned et al., 2011].
Indeed, the concentration of biologically available P in the
interstitial water of D. geminata mats was at least an order
of magnitude greater than the concentration in surface water,
and increased 200‐fold upon incubation in the laboratory.
Such an ability of biofilms to control the hydrologic exchange
of interstitial waters has been demonstrated [Battin and
Sengschmitt, 1999]. Although we have demonstrated the
presence of active Fe3+ and SO4

2− reducers in D. geminata
mats, the identity and source of these microbes remain
unknown. Nevertheless, it is clear that these microbes play
a central role in nutrient cycling within the biofilm.
[12] We conceptualize the autotrophic‐heterotrophic cou-

ple (Figure 2c) as a biogeochemical process by which P is
solubilized from the mucopolysaccaride stalks. In addition,
other processes potentially act to increase P availability.
For example, we observed that the activity of phosphatase
enzymes in the surface of mats was high (3.74 mmol/mg
dry/hr ± 0.51 s.e.m.), consistent with suggestions that organic
P is important in D. geminata blooms [Ellwood and Whitton,
2007]. Since activity of phosphatases is negatively correlated
with the concentration of bioavailable P, the high phos-
phatase activity despite the high concentration of total P in
the mat indicates that P sequestered on the surface of the
mats is in a non‐bioavailable pool [Paludan and Morris,
1999], which could be subsequently solubilized by micro-
bial processes.
[13] Phosphorus limitation has been shown to promote

stalk elongation in D. geminata [Kilroy and Bothwell, 2010],
while P enrichment results in greater cell division and
retardation of stalk production [Bothwell and Kilroy, 2011].
Blooms occur primarily in oligotrophic streams and rivers,
where P availability typically limits primary production. This
observation causes us to reach an interesting conclusion.
Because a bloom consists of stalk material which only forms
in low P conditions, and cell division that occur under
P‐replete conditions: the stalks function in obtaining P, while
the bioavailability of P in the mat is regulated by autotrophic ‐
heterotrophic coupling within the biofilm.We propose that, at
least in D. geminata, these processes create a novel positive
feedback between total stalk biomass and cell division rates,
leading to the seemingly paradoxical formation of blooms in
oligotrophic streams and rivers. Further work should inves-
tigate how P availability in the mats varies spatio‐temporally
due to changes in redox potential. For example, it is likely that
stalk production and cell division are temporally separated
as a function of diurnal changes due to photosynthesis leading
to pulsing of bio‐available P. Furthermore, we suggest that
mucopolysaccarides may have a role in nutrient adsorption
for diatom species, in general. While D. geminata may be
unusual for its high biomass in low nutrient systems, our
results suggest that the mucopolysaccaride stalks, tubes, tufts,
and pads of diatoms may play a role in P adsorption across
different aquatic habitats.

4. Fe Concentrations and Distribution
of D. geminata Blooms

[14] While previous studies have attributed D. geminata
blooms to various factors including flow rates, climatic
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variables, and genetic strains [Kilroy et al., 2009; Kumar
et al., 2009; Kirkwood et al., 2009], our findings suggest
that Fe reactivity and availability may also be a key factor
in determining its distribution (Table S1 of the auxiliary
material). For example, the occurrence of blooms down-
stream of reservoirs may be related to the release of water rich
in Fe and P from the hypolimnion of stratified lakes. How-
ever, not all rivers with high Fe concentrations have, or will
be susceptible to D. geminata blooms, because the reactivity
of soluble Fe is variable, for example, due to the presence of
chelators such as dissolved organic carbon. While our study
presents a mechanism by which P is enriched in D. geminata
mats, the reasons for the sudden onset of the blooms across
the globe remains unclear. Undoubtedly, while human vec-
tors play an important role in the spread of this invasive
species [Bothwell et al., 2009], watershed processes [Sherbot
and Bothwell, 1993] determine the ability of the alga to
form blooms in oligotrophic rivers. Reducing the reactivity
of Fe and other cations in streams to minimize P sequestra-
tion potential of D. geminata mats may present a viable man-
agement option to mitigate the bloom of this invasive species.

[15] Acknowledgments. This work was supported in part by a
National Science Foundation grant (DEB‐0745690), the State of South
Dakota Carbon Scientist fund, and NASA (NCC5‐588). We thank Edward
Duke for assistance with Scanning Electron Microscopy, and Rajesh Sani
and Gursharan Singh for help with microbial assays. Jill Baron, Diane
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Introduction

This auxiliary material contains a figure, a table, and a text file.

1. 2010gl046599-fs01.pdf
Figure S1. SEM images and spot elemental analyses of D. geminata stalks that 
were (A) washed in deionized water (DI), and (B) washed and spiked with Fe and 
P. Spiked samples were washed prior to analyses to remove unincorporated Fe and 
P. The elemental analyses of washed (C) and spiked (D) reveal incorporation of 
Fe and P on the stalks. Background elemental composition of the mount (glass 
slide) is shown in (E).

2. 2010gl046599-ts01.pdf
Table S1. Presence or absence of D. geminata blooms in streams and rivers with 
high potential for introduction by human vectors (anglers) and the concentration 
of Fe in surface water.

3. 2010gl046599-txts01.doc
Text S1. Related notes on Eldorado Natural Spring, Snake River, and Chubut 
River.
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Table S1. Presence or absence of D. geminata blooms in streams and rivers 
with high potential for introduction by human vectors (anglers) and the 
concentration of Fe in surface water. ND: Not Detected 

River Location Fe (mg/L) D. geminata 
Blooms Citation 

    
South Boulder Creek 
Colorado,  US 

~ 0.20 Yes BASIN (2010) 

    
River San Tatra 
Mountains, Poland  

0.28 Yes Satora (2003) 

    
Kootenai River Montana, 
US  

0.20 Yes USACE Unpublished 
data (2009) 

    
Rapid Creek South 
Dakota, US  

0.31 Yes this publication 

    
Eldorado Natural Spring 
that flows into South 
Boulder Creek, Colorado     

 
ND 

 
No 

 
Eldorado Springs 

(2010) 
    
Snake River Wyoming, 
US  

0.038 No Clark et al. (2004), 
Spaulding et al. 

(2009) 
    
Chubut River Patagonia  0.022 No Gaiero et al. (2003) 
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Text S1 

 

Figure S1. SEM images and spot elemental analyses of D. geminata stalks that were (A) 
washed in deionized water (DI), and (B) washed and spiked with Fe and P. Spiked 
samples were washed prior to analyses to remove unincorporated Fe and P. The 
elemental analyses of washed (C) and spiked (D) reveal incorporation of Fe and P on the 
stalks. Background elemental composition of the mount (glass slide) is shown in (E). 

 

A comprehensive survey of Fe concentrations in streams and rivers with D. 

geminata blooms is incomplete, but a preliminary survey of rivers with D. geminata 

blooms shows that a number of sites have high Fe concentrations (Table S1). 

 
 
 
 
NOTES 

Eldorado Natural Spring is an artesian spring that flows into South Boulder Creek, 

Colorado, US. This spring does not support D. geminata blooms despite its confluence 

with South Boulder Creek where significant D. geminata blooms are present. The spring 

water is rich in sulfate but lacks Fe, and transplanting rocks from South Boulder Creek 

with healthy D. geminata mats result in formation of black precipitates likely due to the 

formation of FeS, as observed in Rapid Creek. This also demonstrates the presence of 

adsorbed Fe on the D. geminata mats in South Boulder Creek. Despite transplants D. 

geminata blooms have not been observed in this section of the spring. 

 

Snake River. No cells present [Spaulding et al., 2009]. Dissolved iron and manganese 

were the only trace metals analyzed in samples collected from the Snake River. The 

maximum dissolved-iron concentration for 43 samples collected from the Snake River 
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above Jackson Lake at Flagg Ranch, Wyoming (site 1) was 38 micrograms per liter 

(µg/L), and the maximum concentration from 33 samples collected at the downstream 

site at Moose, Wyoming (site 12) was 27 µg/L [Clark et al., 2004]. 

 

Chubut River. Values from publication [Gaiero et al., 2003] pre-dating the Chaitén ash 

and appearance of cells in the Rio Espolon and Rio Futaleufú in Chile. Values of 

dissolved, filtered (0.22 µm) Fe from 12 rivers in Patagonia ranges from 7.5 - 155 µg/L. 
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