Comment on 'Observation of a narrow structure in $^{1}H(\gamma,K_{0}S)X$ via interference with ϕ-meson production'

M. Anghinolfi

Angela Biselli
Fairfield University, abiselli@fairfield.edu

Copyright American Physical Society Publisher final version available at http://prc.aps.org/pdf/PRC/v86/i6/e069801

Peer Reviewed

Repository Citation
Anghinolfi, M. and Biselli, Angela, "Comment on 'Observation of a narrow structure in $^{1}H(\gamma,K_{0}S)X$ via interference with ϕ-meson production'" (2012). Physics Faculty Publications. 32.
http://digitalcommons.fairfield.edu/physics-facultypubs/32

Published Citation
Anghinolfi, M., Ball, J., Baltzell, N. A., Battaglieri, M., Bedlinskiy, I., Bellis, M., et.al. "Comment on 'Observation of a narrow structure in $^{1}H(\gamma,K_{0}S)X$ via interference with ϕ-meson production". Phys. Rev. C 86, 069801 (2012). DOI: 10.1103/PhysRevC.86.069801

This Article is brought to you for free and open access by the Physics Department at DigitalCommons@Fairfield. It has been accepted for inclusion in Physics Faculty Publications by an authorized administrator of DigitalCommons@Fairfield. For more information, please contact digitalcommons@fairfield.edu.
Comment on “Observation of a narrow structure in $^1H(\gamma, K^0_S)X$ via interference with ϕ-meson production”

1Argonne National Laboratory, Argonne, Illinois 60439, USA
2Arizona State University, Tempe, Arizona 85287-1504, USA
3University of California at Los Angeles, Los Angeles, California 90095-1547, USA
4California State University, Dominguez Hills, Carson, California 90747, USA
5Canisius College, Buffalo, New York, USA
6Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
7Catholic University of America, Washington, D.C. 20064, USA
8CEA, Centre de Saclay, Irfu/Service de Physique Nucléaire, 91191 Gif-sur-Yvette, France
9Christopher Newport University, Newport News, Virginia 23606, USA
10University of Connecticut, Storrs, Connecticut 06269, USA
11Fairfield University, Fairfield, Connecticut 06824, USA
12Florida International University, Miami, Florida 33199, USA
13Florida State University, Tallahassee, Florida 32306, USA
14University di Genova, 16146 Genova, Italy
15The George Washington University, Washington, D.C. 20052, USA
16Idaho State University, Pocatello, Idaho 83209, USA
17INFN, Laboratori Nazionali di Frascati, 00044 Frascati, Italy
18INFN, Sezione di Genova, 16146 Genova, Italy
19Institut de Physique Nucléaire ORSAY, Orsay, France
20Institute of Theoretical and Experimental Physics, Moscow, 117259, Russia
21James Madison University, Harrisonburg, Virginia 22807, USA
22Kyungpook National University, Daegu 702-701, Republic of Korea
23University of New Hampshire, Durham, New Hampshire 03824-3568, USA
24Ohio University, Athens, Ohio 45701, USA
25Northern Illinois University, Dekalb, Illinois 60115, USA
26Rensselaer Polytechnic Institute, Troy, New York 12180-3590, USA
27University of Richmond, Richmond, Virginia 23173, USA
28Skobeltsyn Nuclear Physics Institute at Moscow State University, 119899 Moscow, Russia
29University of South Carolina, Columbia, South Carolina 29208, USA
30Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
31Union College, Schenectady, New York 12308, USA
32Universidad Técnica Federico Santa María, Casilla 110-V Valparaiso, Chile
33University of Glasgow, Glasgow G12 8QQ, United Kingdom
34Washington & Jefferson College, Washington, Pennsylvania 15301, USA
35College of William and Mary, Williamsburg, Virginia 23187-8795, USA

(Received 9 April 2012; published 6 December 2012)

DOI: 10.1103/PhysRevC.86.069801 PACS number(s): 13.60.Rj, 14.40.−n, 24.85.+p, 25.20.Lj

In Ref. [1], the authors claim to observe a narrow structure in the mass spectrum constructed from the (pK_L) system using data from the CLAS detector. The interpretation of this narrow structure given in Ref. [1] is as follows: “It may be due to the
photoproduction of the Θ^+ pentaquark or some unknown Σ^* resonance.” The authors go on to say that “it is unlikely for the observed structure to be due to a Σ^* resonance.”

This analysis was reviewed by the CLAS Collaboration, following the established procedures for all CLAS papers, and did not receive approval. The purpose of this Comment is to explain the reasons why that analysis was not approved for publication.

An extensive review of the analysis in Ref. [1] was carried out by two separate committees of the Hadron Spectroscopy Physics Working Group in the CLAS Collaboration. In both cases, the committees came to the same conclusion: The physics claims of Ref. [1] could not be supported. The reasons for this conclusion are manyfold, but a primary concern is the lack of justification for the kinematic cuts used in that analysis.

The review committees reported that the narrow structure appears only within a specific range of values of the kinematic cuts. Here, the details are important (which cuts were varied and by how much) but this would require more space to document than a simple Comment will allow. We give only one example below but note that the CLAS committees conducted an extensive review of the sensitivity of the narrow structure to what they considered reasonable variations of the cuts [2].

As an example, the cut on the t_0 variable (defined in Ref. [1]) was restricted to a small region of the total phase space ($-t_0 < 0.45 \text{ GeV}^2$). Without this cut, the narrow structure is not statistically significant. By examining Fig. 8 of Ref. [1], one can see that the structure is not really visible in the top spectrum [Fig. 8(a)] and appears only in Fig. 8(c). When the cut value is increased by 20% ($-t_0 < 0.55$) as shown by Fig. 8(b), or decreased by 10% ($-t_0 < 0.4$), as shown by Fig. 8(d), then the purported structure at a mass of 1.54 GeV is consistent in size with other fluctuations in those spectra.

While the authors of Ref. [1] make an argument about why the t_0 cut was necessary, the CLAS Collaboration was not convinced. For example, it is possible that an interference between the narrow structure and the background is dependent on the t_0 variable, but this assumption is difficult to prove. The analysis of Ref. [1] did not provide any evidence of interference phases.

It is not uncommon to use kinematic cuts to reduce background and, hence, improve the signal-to-background ratio for known particles, but other studies [3] have shown that one must be careful when applying kinematic cuts that can create spurious fluctuations. We could argue whether the kinematic cuts used in Ref. [1] are justified, but the fact remains that the CLAS Collaboration as a whole was not convinced that the narrow structure of Ref. [1] corresponds to a real physical entity.

In the end, the validity of the narrow structure claimed by Ref. [1] will be determined by future experiments. If it is a physical resonance, as suggested by Ref. [1], then it should be reproducible. The evidence presented in Ref. [1] was not sufficient to convince the CLAS Collaboration of the physics conclusions of that analysis.
