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INTERACTIONS AMONG ENVIRONMENTAL DRIVERS: COMMUNITY
RESPONSES TO CHANGING NUTRIENTS AND DISSOLVED

ORGANIC CARBON

JENNIFER L. KLUG1,3 AND KATHRYN L. COTTINGHAM2

1Department of Zoology, University of Wisconsin, Madison, Wisconsin 53706 USA
2Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755 USA

Abstract. Biological communities are frequently exposed to environmental changes
that cause measurable responses in properties of the community (hereafter called environ-
mental drivers). Predicting how communities respond to changing environmental drivers
is a fundamental goal of ecology. Making predictions, however, can be very difficult,
particularly when multiple environmental drivers change simultaneously and there are in-
teractions among the drivers. We investigated the effects of the interaction between changes
in nutrient loading and changes in colored dissolved organic matter (measured as dissolved
organic carbon, DOC) on the dynamics of phytoplankton communities over a 7-yr period.
In 1991, Long Lake, a small seepage lake in northern Michigan, was divided vertically,
from sediment surface to water surface, with plastic curtains as part of a whole-lake ex-
periment. The accompanying changes in hydrology led to increases in DOC concentration
in one of the basins. Nutrients were added to both basins from 1993 to 1997, causing
dramatic changes in phytoplankton community composition. We used multivariate auto-
regressive models to help interpret the patterns of phytoplankton community composition
observed during the experiment. DOC and nutrient addition had diverse effects on phy-
toplankton: some taxonomic and morphological groups were directly affected by the changes
in DOC and nutrients, whereas other groups experienced indirect effects via their inter-
actions with groups that were directly affected. Model results suggest that there was an
interaction between the effects of DOC and nutrients for many groups of phytoplankton,
such that differences in DOC concentration accounted for differences between basins in
response to nutrient addition. The effects of DOC can be explained by changes in physical
structure (e.g., thermocline depth and transparency) and water chemistry (e.g., pH) that
accompanied changes in DOC concentration. The interaction between DOC and nutrients
suggests that predicting community responses to multiple drivers cannot be achieved by
simply adding up the effects of single drivers.

Key words: aquatic ecology; dissolved organic carbon (DOC); environmental drivers, multiple;
Michigan; nutrient loading, lake; phytoplankton; whole-lake manipulation.

INTRODUCTION

Changes in natural or human-influenced environ-
mental drivers are responsible for many environmental
problems (e.g., eutrophication of inland and coastal
waters, loss of species due to habitat fragmentation,
and global climate change). Environmental drivers are
exogenous or endogenous variables that cause mea-
surable changes in properties of a community or eco-
system. Often, communities and ecosystems are ex-
posed to changes in more than one driver simulta-
neously. Understanding the effects of multiple drivers
is important both for enhancing our overall ecological
knowledge and for making management and policy de-
cisions (Breitburg et al. 1998).

The response of a system to changes in multiple
environmental drivers may be difficult to predict be-

Manuscript received 2 February 2000; revised 2 November
2000; accepted 30 November 2000.
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E-mail: jklug@mail.fairfield.edu

cause drivers may interact with one another. Many stud-
ies have been conducted on interactions between en-
vironmental drivers and/or stressors, although these
studies tend to extend over a short term and focus on
single species (Cairns et al. 1975, Parker 1979, Borg-
mann 1980, Wallace 1990, Moore and Folt 1993, Pell
et al. 1994, Hanazato and Dodson 1995, Folt et al.
1999). Relatively few studies of multiple drivers have
been conducted on changes in community composition
and dynamics (but see Knight [1987], Turner and Brat-
ton [1987], Chaneton and Facelli [1991], Worthen et
al. [1994], Schindler et al. [1996], and Cottingham
[1999] for exceptions). Statistically speaking, an in-
teraction between environmental drivers exists if the
effects of multiple drivers are greater than or less than
the sum (additive model) or product (multiplicative
model) of the effects of each driver alone (Sokal and
Rohlf 1995). The presence of an interaction is impor-
tant because it means that it will be more difficult to
predict the response to multiple drivers given the re-
sponse to each driver alone. For example, if we know
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how an ecosystem responds to drivers A and B alone,
and if we know that the effects of drivers A and B are
additive or multiplicative, then we can predict the re-
sponse of an ecosystem to drivers A and B together.
However, if an interaction exists between drivers, then
it will be difficult to predict how the ecosystem will
respond until we actually apply the two in combination.

Two important environmental drivers in aquatic sys-
tems are inorganic nutrients (e.g., nitrogen and phos-
phorus) and colored dissolved organic matter (hereafter
CDOM). Much work has been done on the effects of
changes in nutrient inputs (e.g., Schindler 1977, Holm-
gren 1984, Thompson and Rhee 1994, Carpenter et al.
1996, Cottingham et al. 1998) and CDOM concentra-
tions (e.g., Jones 1992, Arvola et al. 1996, Hessen and
Tranvik 1998, Williamson et al. 1999) on lakes. How-
ever, less is known about how changes in nutrient input
and CDOM concentrations may interact (but see Stew-
art and Wetzel 1982, Arvola et al. 1996, Carpenter et
al. 1998a, Reche et al. 1998).

CDOM is a heterogeneous mixture of organic com-
pounds including humic and fulvic acids (McKnight
and Aiken 1998). High levels of CDOM cause lakes
to have a tea-like brown color. The heterogeneous na-
ture of CDOM leads to both positive and negative ef-
fects on all trophic levels in lakes. For example, the
light-absorbing properties of CDOM may reduce pri-
mary productivity of algae (Jones 1992, Carpenter et
al. 1998b) and protect zooplankton and fish from dam-
aging ultraviolet radiation (Williamson et al. 1994,
1997). Some of the complex effects of CDOM stem
from interactions with other drivers in aquatic systems.
For example, CDOM may bind metals (e.g., aluminum
and copper) and thereby decrease metal toxicity to fish,
benthic invertebrates, and phytoplankton (Sunda and
Lewis 1978, Driscoll et al. 1980, Burton and Allan
1986, Welsh et al. 1993). In addition, CDOM may alter
the availability of phosphorus, iron, and carbon, with
dramatic effects on phytoplankton and bacteria (Jack-
son and Hecky 1980, Stewart and Wetzel 1982, Guil-
ford et al. 1987, Jones et al. 1988, Shaw 1994, Moran
and Zepp 1997).

Much of the current work on the effects of CDOM
on primary producers focuses on ecosystem-level prop-
erties (e.g., primary productivity or total phytoplankton
biomass). Fewer studies have looked at how CDOM
and its interactions with other environmental drivers
(e.g., nutrients) affect phytoplankton community dy-
namics (but see Chow-Fraser and Duthie 1987, Jones
1998). It is important to look at changes in community
composition as well as aggregate measures such as pri-
mary productivity because differences in phytoplank-
ton community composition can affect a variety of eco-
system characteristics, such as nutrient cycling (Hessen
and Andersen 1992), zooplankton growth rate (Ahlgen
et al. 1990), and drinking-water quality (Repavich et
al. 1990).

Changes in phytoplankton community composition

can be measured in several ways. Algal communities
are typically diverse (tens of species per sample), and
studies of communities often lump algal species into
groups according to taxonomic or morphological char-
acteristics. Groups based on taxonomy may be ex-
pected to respond similarly to some environmental
drivers (e.g., cyanobacteria are typically negatively af-
fected by low pH regardless of morphology [Paerl
1988]) whereas morphological groups may be expected
to respond similarly to other environmental drivers
(e.g., very large phytoplankton are typically resistant
to zooplankton grazing regardless of taxonomic affil-
iation [Leibold 1989]).

In this paper, we focus on the interactions between
changes in CDOM concentrations and nutrient input
rates, and ask whether the presence of CDOM affects
the response of phytoplankton communities to nutrient
addition. We analyze data from a whole-lake experi-
ment in which nutrients were added to lakes with dif-
ferent CDOM concentrations (measured as dissolved
organic carbon, DOC). We use multivariate autore-
gressive models to identify which environmental driv-
ers and species interactions might be responsible for
the observed changes in the abundances of taxonomic
and morphological groups in the phytoplankton com-
munity. The autoregressive models allow us to address
whether there are interaction effects between DOC and
nutrient addition on community composition. Multi-
variate autoregressive models are useful because they
provide a way to quantify interactions in systems with
multiple interacting taxa and multiple environmental
drivers. This is important because patterns of species
interactions may sometimes obscure the effects of en-
vironmental drivers. In addition, we explore whether
grouping species taxonomically vs. morphologically
affects our interpretation of how phytoplankton com-
munity composition is affected by nutrients, DOC, and
the interaction between the two drivers.

METHODS

Whole-lake experiments

Our analyses focus on Long Lake, a small seepage
lake located in Gogebic County, Michigan (898329 W,
468139 N) at the University of Notre Dame Environ-
mental Research Center. During the 1990s, the lake was
part of a whole-lake experiment designed to test wheth-
er lakes with different food webs responded differently
to nutrient addition. Four lakes were included in the
experiment, and fish communities were manipulated to
produce lakes with differing amounts of zooplankti-
vory (Carpenter et al. 2001). Because our analyses fo-
cus on interactions between DOC and nutrient loading,
we used a subset of the original lakes (East and West
Long Lakes). We chose these lakes for their strong
contrast in DOC concentrations (Christensen et al.
1996) rather than for differences in zooplanktivory.
Zooplankton communities in both lakes were domi-
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FIG. 1. Time series of (a) dissolved organic carbon con-
centration (DOC) (data provided by Mike Pace and Jon Cole)
and (b) mass of phosphorus added per liter of epilimnion per
day in East and West Long Lakes. No nutrients were added
in 1991 and 1992. The dashed vertical line in the DOC panel
indicates the date the curtain was installed between East and
West Long Lakes. The solid vertical line separates the pre-
fertilization years from the fertilized years. Note the differ-
ence in time-scale on the x-axes of parts (a) and (b).

nated by Daphnia species (Pace et al. 1998, Carpenter
et al. 2001). Differences in zooplankton biomass and
community composition between East and West Long
Lakes were small and variable relative to the contrast
provided by the other lakes in the experiment (Car-
penter et al. 1996, 2001, Christensen et al. 1996) and
do not explain the variability in phytoplankton com-
munity composition between lakes (J. L. Klug, unpub-
lished analyses). Here, we describe only the details
relevant to this manuscript; the experiment has been
thoroughly described elsewhere (Carpenter et al. 1996,
2001, Christensen et al. 1996).

There were two major manipulations of Long Lake.
First, in May 1991, Long Lake was divided into three
basins (East, West, and Central) using plastic curtains
that extended from sediment surface to water surface
(Christensen et al. 1996). The east and west basins were
used for the analyses described here. The installation
of the curtain caused DOC concentrations to increase
in East Long Lake (Fig. 1a). DOC concentration in-
creased from pre-curtain values during 1991–1993, re-
mained fairly stable at ;15 mg/L through 1996, and
began to decrease again in 1997. In contrast, DOC con-
centration in West Long Lake was variable among years
and did not show a consistent trend following curtain-
ing (Fig. 1a). After the curtain was installed, DOC con-

centration in West Long Lake was always lower than
in East Long Lake. DOC concentration was correlated
with thermocline depth (Pearson’s correlation coeffi-
cient r 5 20.63, n 5 224 samples) and the light ex-
tinction coefficient (kd) (r 5 0.85, n 5 224 samples).
Differences in sediment chemistry may have caused
the observed changes in DOC. Groundwater entering
East Long Lake flows through organically rich sedi-
ments in the littoral zone, whereas the littoral zone
sediments in West Long Lake contain more sand
(Christensen et al. 1996).

The second manipulation began in 1993, when ni-
trogen and phosphorus were added to both East and
West Long Lakes at a molar N:P ratio of .30:1 (Fig.
1b). Nutrient inputs were highest during the first part
of the year to mimic spring runoff. Loading rates were
variable among years but were similar between basins
within a given year with the exception of 1995 (Fig.
1b). Background phosphorus loading rates were 0.3–
0.4 mg·m22·d21 (Houser et al. 2000).

Limnological analyses

Lakes were sampled weekly from a central station
during summer stratification (late May to mid-Septem-
ber) from 1991 through 1997. Basic limnological sam-
pling included temperature, oxygen, and light profiles,
and Secchi depth. Epilimnetic concentrations of dis-
solved inorganic phosphorus, nitrate, ammonium, total
nitrogen, and total phosphorus were quantified using a
Lachat autoanalyzer (Lachat Instruments, Milwaukee,
Wisconsin, USA). Epilimnetic DOC concentration was
measured using either an Astro 2001 TOC analyzer (OI
Analytical, College Station, Texas, USA) with persul-
fate and UV oxidation (1991–1993) or a Shimadzu
model 5050 high-temperature TOC analyzer (Shimadzu
Scientific Instruments, Columbia, Maryland, USA;
1994–1997). Water pH was measured on a surface sam-
ple. Water samples were pumped into glass bottles such
that no air bubbles were trapped. A two-point calibra-
tion with buffers bracketing the sample pH was used
to calibrate the pH meter before measuring sample pH.
In addition, the pH electrode was presoaked extensively
in sample water to obtain stable readings.

Phytoplankton were collected by pooling samples
from three depths within the epilimnion. Samples were
preserved in glutaraldehyde and mounted in methac-
rylic resin (St. Amand 1990). Phytoplankton were mea-
sured and enumerated to species. For each sample, the
mean greatest axial linear dimension (GALD), mean
individual biovolume (protoplasm exclusive of loricae
and sheaths), and concentration were determined for
each species (St. Amand 1990, Cottingham 1996).

Construction of phytoplankton groups

We used two methods to group phytoplankton spe-
cies. One method was based on taxonomy, and the other
method was based on characteristics of individual spe-
cies. We refer to groups which were lumped according



December 2001 3393INTERACTIONS AMONG ENVIRONMENTAL DRIVERS

to botanical division as ‘‘taxonomic groups.’’ These
include chlorophytes, chrysophytes, cryptophytes, cy-
anobacteria, dinoflagellates, and others. Others in-
cludes rare taxa (e.g., euglenoids and diatoms) and spe-
cies of questionable taxonomic affinity.

We refer to groups that were lumped according to
characteristics of individual species as ‘‘morphological
groups.’’ We used two characteristics, size and motility,
to construct four morphological groups: small, non-
motile (SNM); large, nonmotile (LNM); small, motile
(SM); and large, motile (LM) phytoplankton. We chose
size and motility because we expected these traits to
influence how particular species respond to changes in
nutrients and DOC. Size affects growth rates and up-
take kinetics of nutrients (Malone 1980), whereas mo-
tility may be important if DOC alters light availability
(Jones 1992). We used a cutoff of 30 mm to separate
small and large phytoplankton (Sprules and Knoechel
1984, Lehman 1988). Previous analyses of data from
1991–1994 yielded consistent results when size cutoffs
#30 mm were used whereas cutoffs .30 mm led to
ambiguous results (Cottingham 1996). Some species
exhibit variability in size and may span across the 30-
mm cutoff value. We used mean GALD in a particular
sample as our size criterion; therefore, an individual
species could be in different size classes in different
weeks. Motility was based on whether a species pos-
sessed flagella or other structures capable of moving
them throughout the water column. Taxa that can reg-
ulate their buoyancy using gas vesicles (e.g., some cy-
anobacteria) were also considered motile.

There are a number of physiological traits that may
also affect how particular phytoplankton taxa respond
to changes in nutrients and DOC. For example, some
phytoplankton are able to use organic nitrogen and
phosphorus in addition to the inorganic nutrients avail-
able to them (Sandgren 1988), which may be a useful
trait if DOC contains organic nutrients. In addition,
some phytoplankton are capable of phagotrophic in-
gestion of bacteria (Sanders and Porter 1988). This trait
may be beneficial if increases in DOC lead to higher
bacterial abundance. We chose not to define groups
based on these physiological traits because the exis-
tence of these traits is not known for many species. In
addition, some phytoplankton may be autotrophic some
of the time and phagotrophic at other times, and it
would be difficult to have consistent grouping criteria
for these species.

Autoregressive models

We used first-order multivariate autoregressive mod-
els (Judge et al. 1985, Ives 1995, Ives et al. 1999, Klug
et al. 2000) to describe the possible interactions re-
sponsible for changes in phytoplankton community
composition observed in East and West Long Lakes.
This type of model allows us to quantify the direct
effects of environmental drivers (such as nutrients and
DOC) as well as the interactions (presumably com-

petition) among groups of phytoplankton. Quantifying
the interactions among groups of species is necessary
in order to infer indirect effects of changing DOC and
nutrients on the abundances of the groups of species
(Ives 1995). We fit two separate models: one for the
five dominant taxonomic groups and one for the four
morphological groups. Data from both lakes were an-
alyzed simultaneously.

The model we used was of the form

X 5 A 1 BX 1 CY 1 Et11 t t t (1)

where Xt is a matrix of biovolume of each algal group
at time t, B is a matrix of interaction coefficients be-
tween algal groups (e.g., the effect of chrysophytes on
chlorophytes), Yt is a matrix of environmental covar-
iates (e.g., DOC) at time t, C is a matrix of the effects
of each covariate on algal groups (e.g., the effect of
DOC on dinoflagellates), A is a matrix of constants,
and E is a matrix of residuals. Phytoplankton data were
log(x 1 c) transformed before analysis where c is a
constant. We chose the value of c to normalize the error
terms Et. Environmental covariates in the model in-
cluded the mass of phosphorus added each week by the
experimenters (P), dissolved organic carbon (DOC), a
term for the interaction between DOC and P (DOC 3
P), pH, surface water temperature, surface irradiance,
and week number and week number squared to account
for seasonal effects not represented by the other cov-
ariates. We used only phosphorus to represent nutrient
loading because the amounts of phosphorus and nitro-
gen added were highly correlated (r 5 0.96, n 5 224
samples).

We fit the autoregressive model using least-squares
techniques. The full model (Eq. 1) has a large number
of parameters, but not all parameters were needed to
describe the data. We identified the parameters in the
best-fitting model through an exhaustive search of all
possible models. The best-fitting subset model was cho-
sen as that with the lowest Akaike Information Crite-
rion (AIC), a measure of model fit that includes a pen-
alty for the number of parameters (Box et al. 1994).

We used an ANOVA-type interaction term for DOC
3 P, which assumes that if effects are additive then no
interaction exists. In our case, biovolume was log-
transformed, so we are assuming that log-additivity (or
multiplicativity) means no interaction (Billick and Case
1994). Because the autoregressive models involve no
statistical inference, we are not explicitly testing for
log-additivity (just as we cannot explicitly test for ef-
fects of P or DOC). Rather, we are using the DOC 3
P term to determine whether an interaction term im-
proves the fit of the model (by reducing the AIC). Be-
cause we are using the DOC 3 P term in this way, it
is possible for the best-fitting model to contain the DOC
3 P term without containing both DOC and P.

A caveat is needed when interpreting the results of
the autoregressive models. Autoregressive models rely
on correlated changes in variables. The best-fitting
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TABLE 1. Values for DOC and P used in the long-term mean analysis of the autoregressive
models in a study of phytoplankton response to changes in DOC and nutrient conditions in
a Michigan lake.

Variable Value When observed

DOC low
DOC high
P low
P high

6.6 mg/L
14.9 mg/L
0.15 mg·L21·d21

3.05 mg·L21·d21

West Long Lake 1993
East Long Lake 1993
East and West Long Lakes 1991, 1992
East Long Lake 1996

Notes: High and low values were chosen as the maximum and minimum annual average
observed during the experiment. P is the mass of phosphorus added weekly.

FIG. 2. Yearly averages of biovolumes of taxonomic
groups in East and West Long Lakes. ‘‘Other’’ is the sum of
rare groups (diatoms, euglenoids, and miscellaneous).

models give the best post hoc description of changes
in phytoplankton biovolume, but as with all models
based on correlation, they do not constitute tests of the
effects.

To explore whether the presence of a DOC 3 P in-
teraction term was biologically important, we com-
pared the magnitude of the effects of P, DOC, and the
interaction between DOC and P by analyzing the long-
term means of the best-fitting autoregressive models.
These long-term means were calculated by setting Xt11

5 Xt 5 X*, where X* is the long-term mean biovolume
of phytoplankton groups, and solving Eq. 1 to give

X* 5 (A 1 CY*)/(I 2 B) (2)

(Ives 1995). Here, Y* represents the matrix of long-
term mean values of the environmental covariates, and
I represents the identity matrix. The long-term means,
X*, depend not only on the direct effects of environ-

mental drivers, but also on the indirect effects that are
caused by changes in the biovolumes of competing
groups of phytoplankton. This can be seen in Eq. 2,
because X* depends on B, which gives the interactions
among groups of species. Thus, investigating mean
biovolumes provides a way of summarizing both direct
and indirect effects of environmental drivers on phy-
toplankton groups. In addition, we can compare the
long-term mean biovolume of phytoplankton groups
with and without the DOC 3 P interaction.

To determine the impacts of changing DOC and P
on community composition, and to determine the im-
portance of the interaction term DOC 3 P, we analyzed
five scenarios. First, we calculated baseline biovolume
for each group by setting both P* and DOC* to the
lowest mean annual value observed in either lake basin.
Then, we calculated conditions of high-P/low-DOC*
and low-P/high-DOC*, where the high values of P*
and DOC* were taken as the maximum mean annual
values observed in either basin. Finally, we considered
two cases where both P* and DOC* were high. In the
first case, we set the interaction terms in Y* to zero to
calculate the effects of high P* and high DOC* if these
effects were purely log additive. In the second case,
we used the interaction parameters from the best-fitting
autoregressive model. Comparison of the log-additive
case vs. the interaction case reveals the biological im-
portance of the interaction between DOC and P. Values
for high and low values of P* and DOC* are given in
Table 1.

RESULTS

Phytoplankton community composition:
taxonomic groups

Before nutrients were added (1991–1992), East Long
Lake was codominated by dinoflagellates (primarily
Peridinium wisconsinense, P. umbonatum, and Gym-
nodinium sp.) and chrysophytes (Chrysosphaerella sp.
and Dinobryon divergens). Cryptophytes were also
common members of the community (Fig. 2a). During
the pre-enrichment years in West Long Lake, dinofla-
gellates were less common than in East Long Lake, and
chrysophytes (primarily Uroglena sp. and Synura uvel-
la in 1991 and Mallomonas sp. 3 in 1992) and cryp-
tophytes (Cryptomonas sp. 2 and C. ovata) were rel-
atively more common (Fig. 2b). Following nutrient ad-
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FIG. 3. Time series of biovolumes of (a) dinoflagellates,
(b) chlorophytes, (c) cyanobacteria, (d) cryptophytes, and (e)
chrysophytes in East and West Long Lakes. The vertical line
separates the prefertilization years from the fertilized years.

FIG. 4. Yearly average of biovolumes of morphological
groups in East and West Long Lakes.

dition, total phytoplankton biovolume increased and
taxonomic composition was drastically altered. Dino-
flagellates became rare after the first year of fertiliza-
tion and chlorophytes became more common (Fig. 3a,
b). Cyanobacteria (Anabaena flos-aquae and Anabaena
macrospora) formed blooms following fertilization,
but only in West Long Lake and only in 1993 and 1994
(Fig. 3c). Cryptophyte biovolume increased in both
basins but showed a greater increase in both biovolume
and dominance in East Long Lake (Figs. 2 and 3d).
Overall, chrysophyte biovolume was fairly stable
throughout the experiment, but both basins were more
prone to early summer Synura blooms following nu-
trient addition (Fig. 3e).

Phytoplankton community composition:
morphological groups

During the prefertilization years (1991–1992), East
and West Long Lakes were dominated by motile species
(Fig. 4a, b). Biovolume of large (LM) and small (SM)
motile phytoplankton was similar, and nonmotile spe-
cies were rare (Fig. 5a–d). During this time, dinofla-
gellates and chrysophytes dominated the motile groups
of algae in both lakes. In addition, Cryptomonas ovata

was an important member of motile groups during
1992.

During the first year of fertilization, LM algae in-
creased in both basins of Long Lake. However, the
species of LM algae that contributed to the increase
were different in the two basins. In East Long Lake,
taxa that had been relatively common during 1991 and
1992 (dinoflagellates, cryptophytes, and chrysophytes)
increased during the first year of fertilization. In con-
trast, cyanobacteria (primarily Anabaena flos-aquae
and Anabaena macrospora), which had been rare prior
to fertilization, were responsible for the increase in LM
algae in West Long Lake.

The taxonomic composition of the LM and SM algae
shifted further after the first year of fertilization relative
to pre-enrichment composition. In both East and West
Long Lakes, the composition of motile groups of algae
during the last three years of enrichment was dominated
more by cryptophytes than by dinoflagellates and
chrysophytes.

The biovolume of nonmotile algae (primarily chlo-
rophytes) increased in both basins beginning in 1994
(Fig. 5a, b). In East Long Lake, both large (large col-
onies of Schizochlamys compacta) and small (Cysto-
monas starrii and small colonies of Schizochlamys
compacta) species contributed to the increase in non-
motile phytoplankton biovolume and remained com-
mon for the remainder of the experiment (Fig. 5a, b).
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FIG. 5. Time series of biovolumes of (a) SNM (small,
nonmotile), (b) LNM (large, nonmotile), (c) SM (small, mo-
tile), and (d) LM (large, motile) phytoplankton in East and
West Long Lakes. The vertical line separates the prefertili-
zation years from the fertilized years.

TABLE 2. Predictors of the change in biovolume of taxonomic groups of algae in an experimentally manipulated lake in
Michigan, USA.

Group
affect-

ed

Effect of:

CL D CR CH CY P DOC DOC 3 P TMP pH SI Week (Week)2 R2 R2_D

CL
D
CR
CH
CY

20.42

20.23

20.05
20.43
20.09

20.60
20.58

20.46
20.18

20.03

20.36

0.82

0.70 0.11

20.20

20.14

20.13
20.06
20.08

0.08
20.11
20.09

0.07

0.67

20.02

0.05

20.58 0.01

0.57
0.50
0.52
0.40
0.61

0.24
0.25
0.31
0.23
0.22

Notes: Shown are results for the best-fitting autoregressive model that predicts these algal-population changes. Each term
denotes a term present in the best-fitting model. CL 5 Chlorophytes, D 5 Dinoflagellates, CR 5 Cryptophytes, CH 5
Chrysophytes, and CY 5 Cyanobacteria; P 5 mass of phosphorus added weekly to the lake, TMP 5 epilimnetic temperature,
and SI 5 surface irradiance. R2 denotes goodness of fit calculated by comparing predicted to observed biovolume at time t
1 1. R2_D denotes goodness of fit calculated by comparing predicted to observed change in biovolume from time t to time
t 1 1. Data in each column show the effect of a particular phytoplankton group or environmental covariate on the groups
in rows.

In West Long Lake, the increase in nonmotile algae
was driven primarily by Cystomonas starrii, a SNM
species, and LNM taxa were relatively rare.

Autoregressive models: best-fitting models

We used the autoregressive models to help interpret
the patterns of phytoplankton community composition

observed during the experiment. Specifically, we were
interested in whether the effects of DOC and P were log
additive or whether these drivers interact. Therefore, al-
though most groups were affected by many of the en-
vironmental covariates, we will focus on the effects of
DOC, P, and the interaction between DOC and P.

The direct effects of each driver were identified using
the results of the autoregressive models (Tables 2 and
3, Figs. 6 and 7). Many of the phytoplankton taxonomic
and morphological groups were directly affected by
DOC concentration and/or the mass of P added (Tables
2 and 3). In addition, model results suggest that for
many phytoplankton groups the effects of DOC and P
are not log additive. Including a DOC 3 P interaction
term improved the fit of the autoregressive models for
four of the five taxonomic groups and two of the four
morphological groups (Tables 2 and 3), suggesting that
the presence of DOC affects how phytoplankton re-
spond to nutrient loading.

In addition to identifying direct effects of DOC and
P on phytoplankton groups, the autoregressive models
also reveal indirect effects: DOC and/or P could affect
the abundance of phytoplankton group A by changing
the abundance of group B, if group B competes with
group A. For example, chrysophytes, the pre-enrich-
ment codominant group, decreased in relative biovol-
ume following nutrient addition (Fig. 2). This appears
to be due to an indirect negative effect of increasing
P. Model results suggest that chrysophytes are nega-
tively affected by chlorophytes, which in turn are pos-
itively affected by nutrient addition (Table 2, Fig. 6).
The direct positive effect of nutrients on chlorophytes
translates into an indirect negative effect on their com-
petitors, the chrysophytes.

Autoregressive models: analysis of long-term
mean biovolume

We analyzed the long-term means of the autore-
gressive models to quantify the impact of the inter-
actions between DOC and P on changes in the abun-
dance of phytoplankton groups. The advantage of this
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TABLE 3. Predictors of the change in biovolume of morphological groups of algae in an experimentally manipulated Michigan
lake.

Group
affect-

ed

Effect of:

SNM LNM SM LM P DOC DOC 3 P TMP pH SI Week (Week)2 R2 R2_D

SNM
LNM
SM
LM

20.41
20.72

20.14
20.58

20.19

20.54

1.06

0.13
20.10

20.18
0.09

0.06
0.25

20.04

0.86
0.91

0.82

20.05

20.04

0.46
0.30
0.26
0.30

0.20
0.43
0.28
0.29

Notes: Shown are results for the best-fitting autoregressive model that predicts change in biovolume of morphological
groups of algae. SNM 5 small nonmotile, LNM 5 large nonmotile, SM 5 small motile, and LM 5 large motile phytoplankton;
TMP 5 epilimnetic temperature, SI 5 surface irradiance, and P 5 mass of phosphorus added weekly to the lake. Each term
denotes a term present in the best-fitting model. R2 denotes goodness of fit calculated by comparing predicted to observed
biovolume at time t 1 1. R2_D denotes goodness of fit calculated by comparing predicted to observed change in biovolume
from time t to time t 1 1. Each column is the effect of a particular phytoplankton group or environmental covariate on the
groups in rows.

FIG. 6. Results of the best-fitting autoregressive model
for biovolumes of taxonomic groups (D 5 dinoflagellates,
CH 5 chrysophytes, CL 5 chlorophytes, CR 5 cryptophytes,
CY 5 cyanobacteria) summarized as an interaction web. Ar-
rows represent terms in the model. Solid arrows represent
positive effects whereas dashed arrows represent negative
effects. Thick arrows represent the focal environmental driv-
ers: DOC, phosphorus, and the interaction between DOC and
phosphorus.

FIG. 7. Results of the best-fitting autoregressive model
for biovolumes of morphological groups (SNM 5 small non-
motile, LNM 5 large nonmotile, SM 5 small motile, and
LM 5 large motile phytoplankton) summarized as an inter-
action web. Arrows represent terms in the model. Solid arrows
represent positive effects whereas dashed arrows represent
negative effects. Thick arrows represent the focal environ-
mental drivers: DOC, phosphorus, and the interaction be-
tween DOC and phosphorus.

analysis is that we can model conditions not present in
the whole-lake experiment. In the experiment, DOC
and P were changing simultaneously. In this analysis
we changed one driver while holding the other driver
constant. In addition, analyzing long-term means al-
lowed us to look at the long-term outcome of direct
and indirect effects of P and DOC on phytoplankton
dynamics as well as the short-term direct effects. We
report results for the analysis of long-term means in
terms of percentage difference from the baseline con-
ditions of low P and low DOC (Figs. 8 and 9).

Comparison of the log-additive case and the inter-
action case shows that interactions between DOC and
P have a strong impact on all phytoplankton groups
except SM phytoplankton. Those groups for which a
DOC 3 P interaction was identified in the best-fitting
autoregressive models (Tables 2 and 3) also showed an
interaction effect of DOC and P on the long-term bio-
volume (Figs. 8 and 9). In addition, some groups for

which no interaction was detected in the direct effects
of DOC and P on short-term changes in biovolume
nonetheless showed a DOC 3 P interaction on the long-
term mean biovolume. This is because the effects of
DOC and P are filtered through interactions among spe-
cies. For example, although there are no direct effects
of DOC or P on dinoflagellates, this group decreases
in response to each driver alone. This is because the
group they compete with, the cryptophytes, increases
in response to each driver alone. However, there is a
negative interaction between DOC and P for crypto-
phytes, and in the interaction case, they do not increase
as strongly as would be expected compared with the
log-additive case. Thus, competitive pressure on di-
noflagellates in the interaction case is less than would
be expected compared with the log-additive case, and
the long-term mean dinoflagellate biovolume in the in-
teraction case is higher than expected based on the log-
additive case.
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FIG. 8. Results for biovolumes of the (a) chlorophytes,
(b) dinoflagellates, (c) cryptophytes, (d) chrysophytes, and
(e) cyanobacteria from the long-term mean analysis of the
autoregressive models. Each column represents the effects of
a different combination of P and DOC plotted as percentage
difference from the baseline algal biovolume. P denotes high
P, low DOC; DOC denotes low P, high DOC; ADD denotes
high P, high DOC under the assumption of log-additivity; and
INT denotes high P, high DOC given the interactions present
in the best-fitting models.

FIG. 9. Results for biovolumes of the (a) SNM (small,
nonmotile), (b) LNM (large, nonmotile), (c) SM (small, mo-
tile), and (d) LM (large, motile) phytoplankton from the anal-
ysis of the long-term means of the autoregressive models.
Each column represents a different combination of P and DOC
plotted as percentage difference from the baseline biovolume.
P denotes high P, low DOC; DOC denotes low P, high DOC;
ADD denotes high P, high DOC under the assumption of log-
additivity; and INT denotes high P, high DOC given the in-
teractions present in the best-fitting models. The absence of
a bar means that the particular combination of P and DOC
produced no change in long-term biovolume.

DISCUSSION

Interactions among multiple environmental drivers

Very few studies have explicitly addressed the in-
teractive effects of multiple environmental drivers on
community composition at the whole-system scale. Our
results show that the presence of CDOM (measured as
DOC) affects how phytoplankton communities respond
to nutrient enrichment. The observed effects of changes
in DOC and nutrients on long-term mean biovolume
of phytoplankton groups were much different than
would be expected if the two drivers did not interact
(Figs. 8 and 9). The presence of an interaction between
DOC and nutrients suggests that the effects of DOC
and nutrients cannot be predicted by simply combining
information about the effects of each driver alone. An

added complication is that interactions between drivers
may be magnified or damped by interactions among
groups of species. Therefore, interactions between the
direct effects of two environmental drivers on one
group of phytoplankton affect the entire phytoplankton
community.

We assumed there was an interaction between DOC
and P if their direct effects were not log-additive (mul-
tiplicative) effects. The choice of an additive or mul-
tiplicative model depends on statistical philosophy and
the mechanism by which drivers operate on the re-
sponse variable (Wootton 1994, Hay 1996, Pennings
1996, Folt et al. 1999). We chose a log-additive (mul-
tiplicative) model because multiplicative models are
generally more appropriate for experimental data such
as abundance or biomass (Wootton 1994) and when
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multiple drivers might act on the same physiological
process (Folt et al. 1999).

Direct and indirect effects of DOC and nutrients

Phytoplankton community composition was both di-
rectly and indirectly affected by changes in DOC, nu-
trients, and the interaction between the two drivers. In
some cases, the magnitude of the indirect effects was
quite large. For example, dinoflagellates were nega-
tively affected by cryptophytes, which were positively
affected by added nutrients. Thus, increased nutrients
had a strong negative indirect effect on dinoflagellates
via cryptophytes. Indirect effects of drivers can only
occur when groups of species interact, and thus quan-
tifying interactions among groups is essential for dis-
tinguishing between direct vs. indirect effects of driv-
ers.

Joseph Connell’s work on barnacles was perhaps the
first concrete example documenting indirect effects of
physicochemical drivers on communities (Connell
1961). Connell showed that although desiccation had
a negative effect on two competing species of barna-
cles, the effect on the superior competitor (Balanus)
was greater than on the inferior competitor (Chtham-
alus). Chthamalus could only persist in areas that were
too dry for Balanus even though Chthamalus itself ex-
perienced up to 62% mortality due to desiccation. For
Chthamalus, the loss of its competitor outweighed the
direct negative effects of desiccation, which suggests
an indirect positive effect of desiccation on Chthamalus
(Connell 1961).

Indirect effects of perturbations are likely common,
and a challenge is to find ways to measure the important
interactions in complex communities. Multivariate au-
toregressive models provide a powerful tool to identify
the direct effects of environmental drivers and the in-
teractions among species. Studies similar to ours have
used multivariate autoregressive models to show direct
and indirect effects of pH perturbations mediated by
species interactions within zooplankton and phyto-
plankton communities (Klug et al. 2000, Fischer et al.
2001). We believe that multivariate autoregressive
models will also be useful in analyzing data from other
ecological communities subjected to complex effects
of multiple environmental drivers.

Mechanisms for DOC effects

The mechanisms by which DOC can directly affect
phytoplankton are varied (Jones 1998, Williamson et
al. 1999). In our experiment, DOC was highly corre-
lated with the light extinction coefficient. Some of the
taxonomic groups that were directly affected by DOC
were also directly affected by the amount of surface
irradiance (cryptophytes and cyanobacteria) (Table 2).
This result coupled with the strong correlation between
DOC and the underwater light environment (extinction
coefficient) suggest that DOC may have had a direct
effect on these groups via changes in light availability.

The cryptophytes are a group that can utilize light at
very low light levels (Klaveness 1988) and may ex-
perience a competitive advantage in a high DOC, low
light environment. In contrast, bloom-forming cyano-
bacteria can tolerate higher levels of surface light than
eukaryotic phytoplankton, and blooms typically form
when surface irradiance is high (Paerl 1988). DOC may
also have affected phytoplankton by changing the depth
of the thermocline, as there was a strong negative cor-
relation between DOC and thermocline depth. Shallow
thermoclines favor phytoplankton with slow sinking
rates and/or motility that prevent mixing out of the
photic zone (Reynolds 1988). Cryptophytes were pos-
itively affected by DOC and are a motile group that
are able to maintain vertical position in the water col-
umn.

Changes in DOC may also alter the chemical envi-
ronment. Increases in DOC often increase acidity (Dris-
coll 1989, Hemond 1994). We found that pH and DOC
were not as highly correlated as expected (r 5 20.40,
n 5 224 samples), although pH was always lower
(higher acidity) in the basin with high DOC (East Long
Lake); average summer pH ranged from 5.09–6.07 in
East Long Lake and from 5.55–6.51 in West Long Lake
(J. Cole and M. Pace, unpublished data). Both taxa that
were negatively affected by DOC were also negatively
affected by acidity (cyanobacteria and large, nonmotile
phytoplankton), which suggests that changes in acidity
could also be a mechanism by which DOC affected
phytoplankton in these lakes. In addition, groups that
were directly affected by phosphorus and had a neg-
ative DOC 3 P interaction were also negatively af-
fected by acidity (chlorophytes and small, nonmotile
algae), suggesting that changes in acidity could also
account for the negative interaction between DOC and
nutrients.

There are a number of other mechanisms by which
DOC may have affected the phytoplankton community.
DOC enters the lake as dissolved organic matter, which
contains elements other than carbon (e.g., nitrogen,
phosphorus, and iron). These elements may be released
to the water column upon entering the lake by photol-
ysis of the organic matter (Francko and Heath 1979,
DeHaan 1992, Carlsson and Graneli 1993). Unfortu-
nately, we do not have information about the nature of
the DOC entering the lakes described in this manu-
script. However, if high DOC in East Long Lake pro-
vided phytoplankton with higher levels of nitrogen and
phosphorus, we would expect to see differences be-
tween basins in the phytoplankton community during
the postcurtain, prefertilization years. In contrast, the
major difference in phytoplankton community com-
position occurred following fertilization (Fig. 2), sug-
gesting that DOC did not provide phytoplankton with
significant amounts of nitrogen and phosphorus.

Increases in DOC may also affect phytoplankton in-
directly by enhancing bacterial production. Many of
the taxa in Long Lake are capable of bacterial con-
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sumption and could have benefited from an increase in
bacterial production (Jansson et al. 1999). Bacterial
production increased in both East and West Long Lake
following nutrient addition (Carpenter et al. 2001).
Thus, potentially mixotrophic phytoplankton such as
the cryptophytes (Klaveness 1988) may have increased
following nutrient addition due to increases in bacterial
production. However, this mechanism does not explain
the differences in phytoplankton dynamics between ba-
sins because DOC had no effect on bacterial production
(Carpenter et al. 2001). Furthermore, other potential
mixotrophs such as the chrysophytes (Sandgren 1988)
decreased following nutrient addition, suggesting that
mixotrophy was not widespread.

Our results are only partially consistent with pre-
vious studies of the effects of nutrients on phytoplank-
ton communities (e.g., Schindler 1977, Thompson and
Rhee 1994, Watson et al. 1997, Cottingham et al. 1998),
probably due in part to DOC 3 nutrient interactions.
For example, our results are consistent with previous
work in that chlorophytes and cryptophytes were di-
rectly stimulated by nutrient addition. Chlorophytes of-
ten increase following increases in nutrient loading
possibly due to their high demand for phosphorus
(Holmgren 1984). Cryptophytes also tend to have a
high nutrient demand, and the cryptophytes capable of
mixotrophy may have benefited by increased bacterial
production following nutrient addition (Klaveness
1988). In other respects, our results are not consistent
with previous work. For example, cyanobacteria, which
typically increase following increases in nutrient load-
ing (Thompson and Rhee 1994, Watson et al. 1997),
only bloomed in one basin and only for a brief period
at the beginning of enrichment. Clearly, DOC plays a
role in the unexpected results because cyanobacteria
were negatively affected by DOC, the interaction be-
tween DOC and P, and acidity.

We have assumed that the effects of nutrients were
driven by changes in phosphorus. Because nitrogen and
phosphorus were added together, we cannot rule out
the possibility that some of the nutrient effects were
driven by added nitrogen. The amounts of nitrogen and
phosphorus added were highly correlated and thus both
variables could not be used in the autoregressive mod-
els. We chose to represent nutrient loading with phos-
phorus because it is typically the limiting nutrient in
north temperate lakes (Schindler 1977). In addition,
prefertilization nutrient limitation experiments at this
site showed that phosphorus was the limiting nutrient
when the zooplankton community was dominated by
large zooplankton (Elser et al. 1988), as was true in
East and West Long Lakes. During 1993–1997, dis-
solved inorganic nitrogen accumulated in the epilimnia
of East and West Long Lakes, whereas dissolved in-
organic phosphorus only accumulated in 1996 (the year
of highest nutrient input) (Carpenter et al. 2001). These
results suggest that phosphorus, not nitrogen, was the
limiting nutrient for phytoplankton.

Taxonomic vs. morphological groups

Not surprisingly, results from the two methods of
grouping phytoplankton species were similar when
there was large overlap between the composition of
taxonomic and morphological groups. For example,
small, nonmotile phytoplankton were dominated by
chlorophytes. Nonetheless, we can make interesting
comparisons between the two grouping methods. Pat-
terns that were not detected by taxonomic grouping
were striking when taxa were combined morphologi-
cally. For example, nonmotile algae were rare during
the pre-enrichment years. In addition, there were dif-
ferences between the autoregressive models in terms
of the number of interactions among groups. Negative
effects of morphological groups on one another were
less common than negative effects of taxonomic groups
on one another. Likewise, DOC 3 P interactions were
more common for taxonomic groups than for morpho-
logical groups.

Our choice of morphological traits for grouping, size
and motility, did not always lead to expected patterns.
Comparison of the results for taxonomic and morpho-
logical groups allows us to explore why this is so. We
expected DOC to affect the motile groups positively
because of their ability to remain in a favorable light
environment. Cryptophytes, which are motile, were
positively affected by DOC. However, neither of the
morphological groups of motile algae (SM, LM) were
affected by DOC. This is likely due to the diverse tax-
onomic nature of the morphological groups and the
multiple mechanisms by which DOC affects phyto-
plankton. The large, motile group contains many cy-
anobacteria, which are negatively affected by acidity.
Thus, choosing how to group species becomes more
difficult when drivers affect species via more than one
pathway.

Conclusions

Interactions among environmental drivers, both bi-
ological and statistical, mean that the effects of mul-
tiple drivers cannot be predicted by simply combining
the effects of single drivers. If our goal is to predict
ecological responses to changes in environmental con-
ditions, then we need to be able to anticipate when
interactions among drivers are likely to occur.

We have demonstrated that strong interactions be-
tween DOC and nutrient loading had large effects on
phytoplankton community composition at large spatio-
temporal scales. This interaction appears to result from
the mechanisms by which nutrients and DOC directly
affect phytoplankton: phytoplankton cannot increase in
response to increased nutrient loading if they are light
limited or if they are physiologically stressed due to
high acidity. Similar constraints are likely to hold under
other conditions, as well. More research into the mech-
anisms for both direct and indirect effects of drivers
on communities should facilitate the anticipation of
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interactions and improve our ability to predict respons-
es to future environmental change.
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