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Range-finding method using diffraction gratings

Thomas D. DeWitt and Douglas A. Lyon

A meodel in geometric optics. along with some preluninary experumental results for a new range-finding
method that exploits near-field diffraction phenomena found with plane gratings. 1s presented. Among
the characteristics investigated 1s a magnification effect applicable to three-dimensional microscopy. A
variety of embodiments of the method 1s disclosed, including an off-axis 1llumination model and a method

of near-field focus compensation that takes advantage of the Scheimpflug condition.

1. Introduction

As a point source approaches a plane grating, its
higher-order spectra shift toward its central zero-
order image. This observation can be described by
the use of geometric optical models generally reserved
for the Fraunhofer case of diffraction, even though
observations are taking place within what is gener-
ally regarded as the Fresnel regime, that is, where the
wave front striking the grating is not plane but rather
is measurably spherical in shape. Our model as-
sumes the use of a lens or, in the simple case. a
pinhole aperture, that is. a perspective center, in
order to form diffraction images at a focal plane.

We define the pitch of a grating as the spacing
between the centers of adjacent grating slits. The
phenomena disclosed here are most pronounced when
a grating 1s used whose pitch 1s less than, or near to,
the wavelength of the illumination incident upon the
grating. This appears up to a limit at gratings of a
pitch that is halfthat of the illumination’'s wavelength.
We demonstrate that a magnification effect can be
achieved with such gratings in the near field.

Section 2 reviews the technology of near-field range
finding. Itincludes abriefsurvey of near-field range-
finding methods and a literature survey.

Subsection 3.A presents a mathematical model of a
diffraction range finder with, alternatively, a perspec-
tive center and a simple lens for image formation.
The assumption in this section is that the sensor and
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the target form a line orthogonal to the grating plane.
Subsection 3.B extends our analysis to a more general
case in which source illumination is not restricted to a
line that is strictly orthogonal to the grating plane.
Section 4 compares experimental results with predic-
tions based on the models given in Section 3. In
Section 5 we offer a model for the use of the Scheim-
pflug condition. Section 6 is a comparison with other
range-finding methods in the light of the unique
features of diffraction range finding.

2. Near-Field Range-Finding Problem

Range-finding technologies include triangulation, fo-
cus analysis, interferometry, moiré, and time-of-flight
methods such as sonar. lidar. and radar. These all
can be practiced with active illumination techniques
comparable with the diffraction method we detail in
the sections below. The literature is replete with
surveys of these technologies, and we have included a
bibliography.!

Triangulation methods are the most common form
of range finding in use, but their inherent limitations
have stunted exploitation. All triangulation meth-
ods have zones of occlusion, particularly in the near
field. The near-field blind areas are in the very
region where accuracy would be greatest, given that,
for triangulation and stereoscopy, accuracy is in-
versely proportional to target distance. Occlusion
liability can be lowered by a decrease in the baseline
between transmitter and receiver, thereby lowering
the triangulation angle, but this results in a sacrifice
of resolution. Another restriction affecting triangu-
lation methods is that, in scanning modes intended to
acquire range data over an area of view, it 1s inconve-
nient to synchronize the movement of structured
illumination with the view field of the receiver.
Solutions to this problem have been proposed but
have not enjoyed widespread use.? As aresult, when
staring arrays are used to receive, resolution is sacri-



ficed to achieve a significant field of view over a work
area.

Range finding by focus analysis has the advantage
over triangulation of being monocular, that is, the
source of illumination and the receiver can be coaxial.
This advantage would seemingly overcome the syn-
chronization problem for area scanning. However,
the lenses used for accurate range measurements by
focus analysis have relatively large primary elements
because they work by minimizing depth of field.
Such large instruments can be awkward to scan
quickly. Adjusting focus on large lenses also carries
a mechanical penalty: itis time consuming. In the
extreme near field, in which microscopes can be used,
the small target distances reduce the need for large
primary elements. However, microscopes present
their own practical limitations. These include a
narrow band of range detection, a limited field of view,
and an extremely short work standoff between instru-
ment and target. Focus analysis computations can
be simple for point-by-point measurements, as these
require only minimizing the circle of confusion by a
mechanical adjustment of the objective. However, as
the overall depths to be ranged are broadened, the
mechanical travel of such adjustments becomes time
consuming. If a mechanically passive method is
used, as might be required when the source of illumi-
nation is a projected line for profilometry, focus analy-
sis becomes computationally expensive and less reli-
able because of variations in target reflectivity.

Interferometric methods of ranging can be monocu-
lar (coaxial transmitter and receiver), but they operate
in only a relative coordinate space of contiguous
target surfaces. Any abrupt discontinuity in a target
surface produces ambiguous results. In the other-
wise exquisitely sensitive wavelength interference
designs, as were first shown by the Michaelson—
Morely experiment and which are now routinely used
for measuring the surfaces of lenses, discontinuities
in target surface topology cannot be easily resolved.

Moiré methods are a form of interferometry that
allows for a much coarser increment of depth measure-
ment than classical interferometry based on the wave-
length of light. Nonetheless, moiré methods suffer
ambiguity for target discontinuities greater than these
coarser steps of measurement. Moreover, moiré
methods have all the occlusion problems associated
with triangulation, and the remedy of lowering the
angle between transmitter and receiver carries the
penalty of resolution loss just as it does in triangula-
tion. The primary advantage of moiré is temporal.
An entire surface can be acquired in a single camera
exposure, albeit the postacquisition processing can be
quite time consuming.

Time-of-flight methods of range finding in their
native forms do not suffer from the ambiguities of a
relative coordinate system. Ultrasonic ranging has
evolved into an economical method for many applica-
tions, but sonar is limited to primarily liquid and solid
media for imaging. In air, the angle of dispersion of

the sound beacon is too broad to form an image
conveniently. Ultrasonic electronics also tend to fail
at short ranges because the illumination chirp
interferes with echo detection. Similar near-field
blindness affects most forms of radar and lidar.
Moreover, with these higher-frequency media, time-of-
flight measurements tax the fastest electronic detec-
tors for small increments of range measurement.
There are types of lidar that overcome some of these
limitations in accuracy and near-field blindness. A
detailed analysis of the modulation methods used is
beyond the scope of this article. However, as a
general rule, these methods do not work well in the
extreme near field, under 10 cm, and they carry an
ambiguity penalty similar to interferometry methods.

3. Mathematical Model of Diffraction Range Finding

A. Basic Model

A diffraction grating reradiates incident energy as a
large number of new point-source radiators. To an
observer looking at the grating, only those wave
fronts that arrive with constructive interference at
the point of observation are detected. The remain-
der are eliminated by phase cancellation.

For a point-source radiator at infinity, the intensity
maxima are perceived at angles off the normal accord-
ing to

sinr = Nn/p), (1)

where 7 is angle of the received maxima, A\ is the
wavelength of the incident radiation, p is the diffrac-
tion pitch, and 7 is the diffraction order, an integer.

When the incident wave front striking the grating
originates off the surface normal, a second term must
be considered. We will call it angle i, the angle of the
incident wave front, and

sin7+ sinr = )\(nf D). (2)

Equations (1) and (2) are referred to as the grating
equations and are well-known relationships.?

Consider the model shown in Fig. 1. A point-
source radiator at O is viewed through grating G.
The range 1s D, and d is the standoff between the
grating and a perspective center C.

Using the relationship in Eq. (2) as a basis, we have
shown in a prior publication? that

dtanr|l — (n\/p — sinrp[t/2
- n\/p — sinr

(3)

Equation (3) is useful because it defines range as a
function of r, the angle at which the higher-order
images are received behind the grating. However,

Fig. 1.

Simple geometric model of diffraction.
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Fig. 2. Geometric model of a camera with lens and grating.

image formation requires a lens, so the equation must
be further refined. Consider the model in Fig. 2.
A camera lens of focal length F forms an image at the
focal plane. The high-order diffraction image forms
at an offset, x, from the zero-order at the center.

Similar triangles can be identified on either side of
the lens, so that

tanr = (I/F J; (4)

X

N 2

sin r

must be true.
Substitution of Eqs. (4) and (5) into Eq. (3) yields
X

211/2
[] (x2 FQ}I/Q}

(A /D)x? + F22 — x
To our knowledge, even though Eqs. (3) and (6) fall out
directly from grating equation (2), they did not appear
in the literature before our publications did.> Our
claim that a target’s range could be correlated to the
angle subtended by its diffracted image was suffi-
ciently novel to be awarded a basic method patent.$

n\/p

(6)

D = (xd/F)

B. Diffraction Range Finding with Off-Axis lllumination

Consider the configuration illustrated in Fig. 3. A
laser line is projected at a relief spacing s and angle o
relative to the median line formed by & and D. The
distance from the grating plane to a target O along
the laser line 1s DL. Length S along the grating can
be determined by measured values: length & and
angle . Line segment DL; can be found by similar
triangle ratios. DL can then be derived.
We can write

Kldtany — s)
D= —m8——
cos ¢ — K tan o

where

[1 = (\/p — sin P2

. 3
rrh/p — smpyr )

A detailed derivation for Eqs. (7) and (8) appears in
Appendix A.
An off-axis model for diffraction range finding other

than the one offered here was the topic of a 1987
National Science Foundation Small Business Innova-
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Fig. 3. General case of a diffraction range finder.

tive Research grant.” This model did not include a
perspective center for the observer, and, as a result,
1ts mathematical derivations arrive at a set of expres-
sions different from ours. However, this work does
broach the issue of maxima intensity. With the
exception of calculating the Bragg angle (for which
one can anticipate high grating efficiency), we have
left this topic for our future research. This is be-
cause, in part, we have a special interest in high-
frequency gratings in which intensity models are
particularly idiosyncratic and not categorized by
closed-form relationships.

As we did for the geometric relationship (3), we can
modify Eq. (7) to include a simplified camera model.
A further parameter, p, is included to describe the
rotation of the camera toward the diffraction image:

B |d tan|p + arctan(x/F)| — sk ‘

cos O — Ktan a

DL

(9)

where

(1 = lan/p — sinlp — a tanlx/F)P)>
= n\/p a tan(x/F)|

For cases in which it is more convenient to measure X,
the distance from the grating to the camera along its
axis of view, rather than , the normal from the
grating plane to the lens, we can substitute

(10)

sin|p

d = x cos p. (11)

We have coined an expression, the occlusion liability
angle, for B, the difference between the illumination
angle, a, and the angle incident upon the grating, i:

B=a sin{nka - sinr)— o. (12)



This parameter can be used as the basis of compari-
son of the diffraction method with triangulation in
which occlusion liability 1s a key performance crite-
rion.

4. Reconciliation of Mathematical Models with
Experimentation

We made our earliest observations by using diffrac-
tion gratings whose pitch was larger than the wave-
length of the source illumination. Such gratings
have practical merits when used in diffraction range
finders. With nonsinusoidal groove geometries, they
can produce a multiplicity of higher-order diffraction
images from a single point source, allowing for redun-
dant views that can overcome many near-field occlu-
sion cases. The lower-order images have lower occlu-
sion liability angles than the higher-order images do,
whereas the higher-order images have greater sensi-
tivity to range.

Consider a coarse grating with a pitch of 5555 nm.
We conducted an experiment using the bench setup
illustrated 1 Fig. 4. A test block was used as a
target. It had milled steps of 0.1 in.(2.54 mm). The
target was illuminated with a 670-nm laser stripe
that was projected through an open gap in the grating.
(Projection through the grating itself would have
produced a multiplicity of illumination stripes. This
1s a strategy sometimes used in triangulation devices,
and a comparison with our method appears in Section
6.)

Using Egs. (7) and (8), we can graph the received
angle of diffraction versus the range, as shown in Fig.
5. The occlusion liability angles, B, are shown in the
matching graph. The predicted camera image is
graphed in Fig. 6. We assumed a camera at a
distance  of 20 cm to the grating, a lens with focal
length 7 = 25 mm, and a target range of 30 to 70 mm.
Our experimental result is shown in the matching
camera recording in Fig. 6. The image is of a test
block with 0.254-mm steps. It must be noted that
the grating used to produce the image was an inexpen-
sive embossed plastic sheet (available from Spec-
tratek of Los Angeles).

D § [m Top View
%
N
o
Side View
Camera
Fig. 4. Bench test for low-frequency grating (p = 5.55 mm.

I = 670 nm). Camera-to-grating distance d = 20 cm. test block

steps 2.54 mm X 2.54 mm.

TN A4
“S LR / |/

Y N\
=2 |n=1 =1 n=2/
20 L LI
o
- = - - 2 1 2 3 i
rindeg

i L] T T T T T T

rindeg

Fig. 5. Graph of range DL versus angle of received diffraction
image » for first and second orders.

The effect of a 20° off-axis rotation of the source
illumination with the 5555-nm grating is illustrated
in Fig. 7. The negative orders are no longer sym-
metrical with the positive orders. It can be argued
that this effect increases the sensitivity of a grating to
range.® but because the zero order also shifts accord-
ing the principle of triangulation, the increased sensi-
tivity is really a compound effect of both triangulation
and diffraction. A camera-recorded image of our test

= LIV 1/

Fig. 6. Cameraimage of test block with low-frequency grating.
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Fig. 7. Predicted behavior of off-axis illumination and a compari-
son of occlusion liability angles for first and second orders.

block positioned 30 mm from the grating 1s shown in
Fig. 8.

Another means of increasing grating sensitivity to
range is to decrease the grating pitch relative to the
wavelength of the source illumination. We illustrate
the phenomenon by using a grating whose pitch is 10
times finer than that used in the two experiments
above.

Consider the bench experiment shown in Fig. 9. A
step test block is illuminated by a laser with a relief s
of 100 mm and a rotation of @ = —22° The negative
rotation optimizes the sensitivity to range at the
expense of occlusion liability, as graphed in Fig. 10.
The sensitivity is sufficient to magnify range resolu-
tion relative to a corresponding lateral dimension.
Referring to Fig. 11, we can compare predicted and
actual performances for an image taken with a 25-mm
lens, where the median distance  from the grating
plane to the camera is 245 mm. Each vertical line in
the camera image corresponds to a length of 2.54 mm.

Fig. 8. Off-axis illumination with a 5555-nm grating: o = 20°,
the zero order 1s 1dentified with an arrow.

2514 APPLIED OPTICS / Vol. 34, No. 14 / 10 May 1995

Fig. 9. Setup diagram for experunent with high-frequency grat-
mg. Sight lines are ray traced. The target 1s a step block rotated
by 25° to optimize 1llumination levels.

The horizontal steps represent a 2.31 increment of
range along DL. The experiment demonstrates that
range sensitivity is equal to or greater than sensitiv-
ity to the corresponding lateral dimension.

Occlusion liability can be lowered while range
sensitivity is maintained if diffraction range-finder
parameters are adjusted properly. For gratings with
a pitch shorter than illumination wavelength, con-
sider the change in the incident angle i versus the
receiving angle r. The function produces a generic
relationship. which is graphed in Fig. 12. The point
at unity slope, where i equals r, is the Bragg angle .
For values of r above the Bragg angle, a change in 7" is
greater than an equal change in i. When proper
adjustments are made for input angle and view angle,
the grating can serve as a magnifier.’ Moreover, if
the range finder is designed to use angles centered on
the Bragg angle, relatively efficient transmission of
light 1s ensured.

For example, consider the setup illustrated in Fig.
13. We use a grating with a pitch of 400 nm and a
670-nm laser and set 7= 15cm and s = 15cm. The

-0 1 ! 1 1
w 135 20 F- E 5 eh)
rindeg
e T T T T T
0 = -
M
bex |
a % %l
B owt -
deg
b -
& L 1 1 1
11] 15 20 2 30 b\ | A
e
deg

Fig. 10, DL versus receiving angle compared with occlusion
liability angle, B, with a 555-nm grating, where @ = 22° and s = 100
mm.



DL 20

mim

Fig. 11. Comparison of predicted performance with an image that
was camera recorded with a high-frequency grating. The camera
has a sensor measuring 6.41 mm in the horizontal, which is given
as x in the graph. The zero-order image appears in the camera
image as a vertical line.

laser beam is off axis by @ = 48°. As shown in Fig.
14, this configuration produces an occlusion liability
angle of under 20° throughout the sampled region.
Yet range sensitivity is better than that produced by
low-frequency gratings with equivalent occlusion im-
munity. We model the camera image in Fig. 15,
assuming a lens of 25 mm on a 5-mm-wide chip. A
camera-recorded image, made with a 6.5-mm-wide
sensor chip, is shown in Fig. 16. It shows artifacts of
magnification much like those produced by anamor-
phic lenses. The extent of magnification can be
evaluated by the use of the test block steps. In the
near field. the steps appear to be equal in both the
horizontal and the vertical directions, that is, in this
configuration the diffraction range finder is equally
sensitive to lateral and depth dimensions.

The artifacts in Fig. 16 include a relatively short
depth of field. Only the near field 1s in focus. A
method of compensation for increasing depth of field
is suggested in Section 5.

vm

\

rindeg

90

Fig. 12. Generic curve that relates incident and receiving angles
for gratings with pitch shorter than incadent illummation. At
angle, i = 1.

camera
test block
-1
rd
R4
4
K4
rd
/ .
7 grating
Fa)
laser

Fig. 13, Configuration for combined occlusion immunity and high
range sensitivity.

5. Scheimpflug Condition

Depth of field plays a role in the diffraction range
finder; it must be maximized. The higher-order spec-
tra must be resolved at the detection plane over a
wide span of distances from the grating. Given that
this depth-of-field problem is the reverse of that of the
focus analysis range finder, in which depth of field
must be held to a minimum. it is clear that diffraction
range finders benefit from the use of wide-angle
lenses. Photographers practiced in the art know
that wide-angle lenses have the greatest hyperfocal
distance, that is, distance from infinity to a fore-
ground point that can be resolved as in focus. The
standoff of lens to grating creates a natural fit be-
tween all components, requiring no focus adjustment
in many implementations of diffraction ranging.

If a long-focal-length lens is used in a diffraction
range finder, which could be the case if grating size
were to be held to a minimum, the diffraction method
lends itself to a special form of focus compensation.
When a lens is used to form an image of a sloping
object, the object plane, the image plane, and the
median plane along the lens will all meet together at a
common point. We illustrate this in Fig. 17. This
method of focus compensation is called the Scheim-
pflug condition.!®

The object plane lies on the line segment 4C. The
image plane lies on the line segment 4D. The

1% T T T T
oL
in 10 = -
mm
Eo —
. 1 L 1 1
2 - a“4 “ 0 n
rindeg

F5=
B “
T T
1 I

rindeg

Fig. 14. Receiving angle correlated to range DL and occlusion
lLiability angle B.
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Fig. 15, Camera model prediction assumimg a 25-mm lens on a
camera 18 cm from the grating.

median plane passes through the lens and lies on the
line segment 45. All planes are shown to meet at a
common point, 4, which forms the apex of two
right-angle triangles, 4BC and ABD. These tri-
angles share a common side (4B) whose length is

object image
plane

)
)
!
Y
i
=
A

Fig. 17. Geometric model of the Scheimpflug condition.

The position sensor and the target are at arbitrary
angles with respect to the diffraction grating. The
relation between the angle of the position sensor, g,
with respect to the main optical axis, ZD, the position
sensor distance from the lens, object pose (position
and orientation), lens focal length, diffraction-grating
pitch, diffraction-image order, and illumination wave-
length shown in Fig. 18 is

bk |

g=tan

) tsin k tsmk |2 12
ta{n.\/p = sm[ta_n_l P | tan_l(m) = 1] o
ftsink ) fsin k 2|1/2 T tcosk+d| (14)
tcosk+d+gq 1= nh/p— Sm[tan_l(rcosk—i- d+q ]

denoted as /. The optical axis of the camera lies on
line segment CD.

If we let angles CAB be denoted as a. ACB be
denoted as e, BDA4 be denoted as g, and assume that
we have a simple converging lens of focal length f
then

g =tan = E_(cos_z e— 112 - tane (13)

must be true.
Appendix B.

The geometric model of the Scheimpflug condition
becomes more interesting when a diffraction grating
is inserted between the lens and the object to be
imaged (i.e., in front of the camera). A sketch of this
model is shown in Fig. 18.

The proof of Eq. (13) appears in

Fig. 16. Camera recorded test block with low occlusion liability
and high sensitivity.

2516 APPLIED OPTICS / Vol. 34, No. 14 / 10 May 1995

The proof of Eq. (14) is given in Appendix B.

6. Comparison of Diffraction Range Finding with
Other Methods

Multiple-stripe triangulation systems, which use dif-
fraction gratings to project an array of points or lines
on a target surface, have been developed. One such
system uses multiple-triangulation cameras to re-
solve ambiguities caused by overlapping lines.!!
Diffraction range finders, on the other hand. can
produce multiple images from a single point, each
image having its own perspective view. This simple
reversal of function, in which the grating is used to
observe a target surface rather than illuminate it, has
a variety of advantages over conventional triangula-
tion.

Near-field blindness, which is endemic to all stereo-
scopic and triangulation devices, can be avoided in

A
a
zero-order g—a'.ting
-0 7 s

k P [; D | position

: P sensor
s -
5

J

high-order

¥ e i

Fig. 18, Geometric model of diffraction and the Schemmpflug
condition.



diffraction range finders, as they can be designed to
work to point of contact. Moreover, in diffraction
range finders the source of illumination and the
receiver can be coaxial. Such a configuration over-
comes synchronization problems that affect scanning
triangulation sensors. The occlusion problems char-
acteristic of triangulation can be moderated by the
use of multiple cameras and relatively narrow base-
lines between projector and sensor. Our diffraction
method can achieve similar benefits with a single
camera viewing multiple higher-order images. Ifthe
source of illumination is directed off axis, the diffrac-
tion method can be combined with triangulation to
produce a compound effect that has the features of
both methods. Another marriage of technologies
could include anamorphic lenses and the diffraction
magnification feature we have disclosed here.

Lenses in themselves have the ability to measure
range through focus analysis. Like the diffraction
method, these methods are monocular, that is, trans-
mitter and receiver can be coaxial. However, com-
pared with the diffraction method, which measures
the deflection of a point, the focus-analysis method is
computationally expensive. It requires that a mea-
surement be made on a Gaussian spot that can vary
widely in brightness, depending on target reflectivity.
The computation can be avoided if the spot is mechani-
cally focused to the smallest diameter, but this method
i1s cumbersome for large lenses. Unfortunately, the
accuracy of the focus-analysis method is proportional
to the size of the lens. The diffraction method is also
scaled by the size of the grating, that is, the more
distant the point. the larger the grating required for
ranging it, but we have demonstrated that plastic
embossed holographic gratings can be used. Com-
pared with lenses, even Fresnel lenses, these plastic
gratings are very cost effective. Furthermore, no
mechanical focusing is required if the diffraction
range finder has Scheimpflug compensation.

Interferometric methods of range finding share
some of the same underlying physics with our diffrac-
tion method, as both rely on the behavior of wave
fronts that form constructive peaks and destructive
nodes. However, the grating method returns range
measurements in absolute coordinates, whereas clas-
sical interferometry produces relative measurements
that can be ambiguous over discontiguous surfaces.
Moreover, although we have used laser light for
convenience, the diffraction method does not require
coherent illumination. It works perfectly well in
incoherent multispectral illumination, provided that
a point source can be resolved on the target surface.

Time-of-flight methods of range finding have dis-
tinct advantages over diffraction in the far field, but
for near-field work, the diffraction method is superior.
The diffraction method improves in accuracy in-
versely with target distance, and there is no cross talk
between the transmitter and the receiver as there is

with time-of-flight methods.

7. Conclusion

Diffraction range finding opens a new application for
gratings. The practical need for three-dimensional
instrumentation forms a strong motivation for contin-
ued investigation of the method. Potential uses exist
in microscopy. machine vision, and computer graphics.
We have posited a series of geometric relationships
that can be used to model diffraction range finders.
Work remains to be done in physical optics to model
the intensity fields and limits of resolution for grat-
ings used in range-finding applications.

Appendix A

We have previously shown that

[1 - (nh/p — sinrp |1f'rZ
n\/p — sinr

D = dtanr (A1)

Refer to Fig. 3 in the body of the text; the length along
a normal from the median extending to the point of
the observed higher-order diffraction can be deter-
mined by

S=dtanr. (A.2)

The side As to the right triangle formed by DL and
DL, can be found by

As = DI, tan a. (A.3)

We use side ratios of similar triangles to express the

normal distance from the grating, DL, along the line

of 1llumination projected from a laser:
D DI, (a.4)
=" A4
S S-—-s+As

Substituting Eqs. (A.2) and (A.3) into Eq. (A.4), we have

D DI,
dtanr dtanr — s+ DL, tan a

(A.5)

The distance from the grating along the laser line,
DL, is

DL = DLy/cos a. (A.6)
Solving for DL, we find that
DL, = DI cos a. (A7)
Substituting Eq. (A.7) into Eq. (A.5). we obtain
D DL cos a
= - (A.8)
dtanr dtanr — s+ DL cosatana
Solving for D, we obtain
DI cos a
D= dtanr - (A9)
dtany — s + DL cos a tan «
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Equating Eqs. (A.1) and (A.9) yields

[1 = (\/p — sin /2
n\/p — sinr

dtan r

DI cosa

dtanr — s + DI cos o tan o

dtanr (A.10)

Dividing both sides of the equation by & tan r and
simplifying results in

The distance from the camera to the grating along X'is
given by

d=Xcosr. (A.18)
Substituting Eq. (A.18) into Eq. (A.15)yields
Xcosrtany — 5
DIL= g : (A.19)

COsS (0 — K Sl o

We define the angle, B. as the occlusion liability angle
so that

[1 - (N/p — sin P2 _ DI cos a . e (A.20)
n\/p — sinr dtanr — s + DL sina ) ) ) .
(A.11) Solving the grating equation (2) for i yields
Partially solving for DL we can say that i = arcsin( )\X p — sinr). (A.21)
dtanr — s + DL sina)l — (n\/p — sinr 1/2
P f1 - (/] i (4.12)

cos afn\/p — sinr)

For the sake of notational convenience we use the
convention that

B 1 — (n\/p — sin P2

Substituting Eq. (A.21)into Eq. (A.20) and solving for a
yields

ic (A.13) a = arcsin(\/p — sinz) — B. (A.22)
n\/p — sinr
Substituting Eq. (A.13) into Eq. (A.12) yields Given a camera with focal length F, rotated from the
normal by angle p. and with focal plane image displace-
(dtanr — s + DL sin a)k ment x, we can use trigonometry to find
DL = - (A14)
cos
r=p-+ a.rctan(x/F). {A.ZB)
Solving Eq. (A.14) for DL yields
e Substituting Eq. (A.23) into Eq. (A.13)yields
I=——. (A.15)
ROSH TR I (1 = {N/p — sin|p + arctan(x/F)|P)"/?
We substitute @ = 0 and s = 0 into Eq. (A.15) to show - n\/p — sinlp + arctan(x/F)| (a.24)
that this results in Eq. (A.1):
S bR, (A.16) Substituting Eq. (A.23) into Eq. (A.15) yields
Substituting Eq. (A.13) into Eq. (A.16) results in Eq. |d tan(p + arctan(x/F)| — sk cos «
(A1) DI - (A.25)
" 1-ktana
|1 — (\/p — sin P
DI = dtanr H)\/p — siny - a17) Substituting Eq. (A.24) into Eq. (A.25) yields
(1 - [\/p — sinlp + arctan(x/F)JP)
dt + arctanix/F)| — 5
I tarlp+ arctanlx/F] S'{ n\/p — sinlp + arctan(x/F)|
DL = - ) (A.26)
(1 — {m\/p — sinlp + arctan(x/F)P)"?]
cos« nk/p sin|p + arctan(x/F)| S
Simplifying yields
|d tanlp + arctan(x/F)| — sf1 — [\/p — sinlp + arctan(x/F)|P)!/2
DL / : (A.27)
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Appendix B: Proof of the Scheimpflug Condition

In this section we prove that the relation for the
film—plane angle for the Scheimpflug condition as a
function of the object pose and the lens focal length is

q p ]
g=tan !|= )—r(cos_2 e — 1)'2 — tan e,

where f is the focal length of the lens. e is the angle
the target makes with respect to the optical axis, ¢ is
the distance from the lens to the target, and g 1s the
angle the sensor makes with respect to the optical
axis. In the subsequent subsection we combine this
result with diffraction.

A geometric model of the Scheimpflug geometry is
shown in Fig. 17.

B.1. Proof
For right-angle triangle 4BC

2 =m? - ¢ (B.1)
tan e
Ljg=r (B.2)
m= gfcos e. (B.2a)
For right-angle triangle 4BD,
= - p?, (B.3)
tan g .
1/p= . (B.4)
n= p/cos g. (B.4a}

For a simple converging thin lens of focal length £, we
invoke the Gaussian lens formula:

1/f=1/p +1/q.

Substituting Eqs. (B.2) and (B.4) into Eq. (B.5) and
solving for g yields

(B.5)

g = tan Y(1/f - tan e). (B.6)
Equating Eq. (B.1) with Eq. (B.3) results in
I’ =n* — p’=m* - ¢ (B.6a)

Substituting Eqs. (B.4a) and (B.2a) into Eq. (B.6a)
yields

I?=(pfcos gl — p* = (g/cos ef — ¢>. (B.7)
Simplifying Eq. (B.7)yields
I=*plcos2 g — 11/2 = +glcos™2 e — 1}”3. (B.7a)

We substitute Eq. (B.7a) into Eq. (B.6) to obtain
-1 4 -2 1/2
g = tan '|* ?(cos e— 12 — tane|. (B.8)

Equation (B.8) shows the film—plane angle for the
Scheimpflug condition as a function of the object pose
and the lens focal length.

QED.

B.2. Diffraction and the Scheimpflug Condition

In this section we introduce a diffraction grating into
the camera. Using the diffraction image from the
position sensor, we are able to compute the range of
the object.

The purpose of this section is to compute at what
angle to place the position sensor inside the camera,
given the position sensor distance from the lens,
object pose (position and orientation), lens focal length,
diffraction-grating pitch, diffraction-image order, and
illumination wavelength. The constiuction is shown
inFig. 18.

The diffraction grating lies on the line segment JC.
A point source of light at location X is seen by the
position sensor as having a high-order diffraction
image that appears to be located at point ¥. In fact,
the point source of light at location X emits a ray that
lies on line segment X.J and is bent by the diffraction
grating to lie on line segment /B, passing through the
lens. The length of the object t is known. Also
known is its angle & with respect to the optical axis.
In the following proof, we make use of these param-
eters and of the fact that right-angle triangle XYZ has
a side in commeon with right-angle triangle BYZ.

Triangle XJB is subject to the diffraction equation:

sini+ sinr nh/p, (B.9)
where 7 1s the diffraction order, A is the wavelength,
and p is the grating pitch. The following equation is
identical to Eq. (3) of Section 3 with the exception that
there are some notational substitutions. These differ-
ences are needed to account for the new Scheimpflug
construction shown in Figure 18:

gtanr|l — (n\/p — sinrP[/2 ( )
: B.10
nh/p — sinr
Solving Eq. (B.10) for g results in
d{nh/p — sinr)
(B.11)

tan {1 — (m\/p — sin rp|i/? ‘

In addition, because the Scheimpflug condition still
applies, Eq. (B.8) must still be true, that is,

1

cosl e

1/2
g= tan_lli = - 1) — tan e}. (B.8)
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Substituting Eq. (B.11) into Eq. (B.8) yields

) +dy — sinrfcos™ e — 1)1/2
= tan — tan e|,
E Stan |l — (y — sin pP[2
(B.12)
where y = »N/p for notational convenience. As tri-

angle X¥Z is a right-angle triangle and as we know the
angle of the object, &, and its length, 7, we can show that

s = tsin k, (B.13)

o =tcos k. (B.14)
By basic trigonometry we can see that

s=¢q tane (B.15)

must also be true.
we may solve for e:

Equating Eqs. (B.13) and (B.14).

7 sin
e=tan {———|- (B.16)
q
It can be seen from Fig. 18 that
g =0 +d. (B.17)

Substituting Eqs. (B.14) and (B.17) into Eq. (B.16)
yields

rsin k
tcosk + d

Finally, we observe that right-angle triangle BYZ has a
side in common with right-angle triangle XYZ so that

e = tan (B.18)

5

1 .
b g

r = tan~ (B.19)

q

Substituting Eqgs. (B.15), (B.16), and (B.17) into Eq.
(B.19)results in

fsin k

| v A
e [r cosk+d+g (B.20

r=

Substituting Eqgs. (B.18) and (B.20) into Eq. (B.12)
results in an equation that yields the angle of the
position sensor as a function of the distance of the
object from the grating, . the distance of the grating
from the lens, ¢, the diffraction grating pitch, illumi-
nation wavelength, diffraction order, focal length,
object length and object angle:
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