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The polarized longitudinal-transverse structure functionsLT8 has been measured using thepseW ,e8p+dn
reaction in theDs1232d resonance region atQ2=0.40 and 0.65 GeV2. No previoussLT8 data exist for this
reaction channel. The kinematically complete experiment was performed at the Jefferson Lab with the CEBAF
large acceptance spectrometer using longitudinally polarized electrons at an energy of 1.515 GeV. A partial-
wave analysis of the data shows generally better agreement with recent phenomenological models of pion
electroproduction compared to the previously measuredp0p channel. A fit to bothp0p andp+n channels using
a unitary isobar model suggests the unitarized Born terms provide a consistent description of the nonresonant
background. Thet-channel pion pole term is important in thep0p channel through a rescattering correction,
which could be model dependent.

DOI: 10.1103/PhysRevC.70.042201 PACS number(s): 13.60.Le, 12.40.Nn, 13.40.Gp

The excitation of nucleon resonances using electromag-
netic interactions is an essential tool for understanding quark
confinement. However, the excited states of the nucleon de-
cay rapidly through the emission of mesons. Thus, the reso-
nance formation mechanism can involve both hadronic struc-
ture and reaction dynamics, intermixing quark and meson
degrees of freedom. To understand the role of the meson
cloud in resonance photoexcitation, a variety of theoretical
approaches have been developed, e.g., chiral quark and soli-
ton models, chiral perturbation theory, dispersion relations,
effective Lagrangian and dynamical models, and most re-
cently, lattice QCD.

A unique generation of high-precision photoproduction
and electroproduction experiments have made it possible to
test theoretical predictions with unprecedented accuracy. The
most precise measurements exist for excitation energies
around theDs1232d resonance and four-momentum transfers
Q2,1 GeV2. Experiments using polarized real photons at
LEGS and Mainz[1,2] and unpolarized electrons at Bates,
ELSA, and the Thomas Jefferson National Accelerator Facil-
ity (Jefferson Lab) [3–6] have measuredD+→pp0 decay an-
gular distributions with the goal of determining the magni-
tude andQ2 evolution of theND transition photocoupling
amplitudes. However, theoretical calculations predict a sub-
stantial modification of theND form factors due to the pres-
ence of nonresonant Born diagrams(Fig. 1). Moreover, these
predictions are subject to considerable model dependence
from the treatment ofpN rescattering in the final state.

To better study these nonresonant contributions, several
recentpseW ,e8pdp0 experiments in theDs1232d region[7–12]
have utilized single spin-polarization observables to directly
determine the imaginary part of interfering amplitudes. In
this way, the nonresonant amplitudes, which are largely real,
are greatly amplified by the imaginary part of the dominant
Ds1232d M1+

3/2 resonant multipole. Until now, beam asymme-
try measurements existed only for thep0p channel, where
pion rescattering corrections are large and model dependent
[13,14]. Predictions for thep+n channel show less model
dependence, and are dominated by thet-channel pion pole
and contact Born terms, which are absent or weak in thep0p
channel. Measurement of both charge channels is therefore
essential to test the consistency of the model descriptions.

We present measurements of the longitudinal-transverse
polarized structure functionsLT8 obtained in theDs1232d
resonance region using thepseW ,e8p+dn reaction. The data
reported here span the invariant-mass intervalW
=1.1–1.3 GeV atQ2=0.40 and 0.65 GeV2, and cover the
full angular range in thep+n center of masssc.m.d. These
data were taken simultaneously with thepseW ,e8pdp0 channel
for which results were reported previously[12].

*Current address: Sakarya University, Sakarya, Turkey.
†Deceased.

FIG. 1. Born terms which contribute to nonresonant background
in p electroproduction:(a) t-channel pseudoscalar and vector me-
son exchange,(b) s-channel nucleon pole,(c) u-channel nucleon
pole, and(d) contact term.
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The experiment was performed at the Jefferson Lab using
a 1.515 GeV, 100% duty-cycle beam of longitudinally polar-
ized electrons incident on a liquid-hydrogen target. The elec-
tron polarization was determined by Møller polarimeter mea-
surements to be 0.690±0.009sstat.d±0.013ssyst.d. Scattered
electrons and pions were detected in the CEBAF large ac-
ceptance spectrometer(CLAS) [15]. Electron triggers were
enabled through a hardware coincidence of the gas Cěrenkov
counters and the lead-scintillator electromagnetic calorim-
eters. Particle identification was accomplished using momen-
tum reconstruction in the tracking system and time of flight
from the target to the scintillators. Software fiducial cuts
were used to exclude regions of nonuniform detector re-
sponse. Kinematic corrections were applied to compensate
for drift chamber misalignments and uncertainties in the
magnetic field. Thep+n final state was identified using a 2s
cut on the missing neutron mass. Target window back-
grounds were suppressed with cuts on the reconstructede8p+

target vertex.
The single-pion electroproduction cross section is given

by

d 4sh

dQ2dWdVp
* = J Gv

d 2sh

dVp
* , s1d

where Gv is the virtual-photon flux and the JacobianJ
=]sQ2,Wd /]sE8 ,cosue,fed relates the differential volume
elementdQ2dW of the binned data to the measured electron
kinematicsdE8 d cosue dfe. Here d 2sh is the c.m. differ-
ential cross section forg*p→np+ with electron-beam helic-
ity sh= ±1d. For an unpolarized targetd 2sh depends on the
transversee and longitudinaleL polarization of the virtual
photon through five structure functions:sT,sL ,sTT, and the
transverse-longitudinal interference termssLT andsLT8,

d 2sh

dVp
* =

pp
*

kg
* fs0 + hÎ2eLs1 − ed sLT8 sin up

* sin fp
* g,

s0 = sT + eLsL + e sTT sin2up
* cos 2fp

*

+ Î2eLs1 + ed sLT sin up
* cosfp

* , s2d

wherepp
* andup

* are thep+ c.m. momentum and polar angle,
fp

* is the azimuthal rotation of the hadronic plane with
respect to the electron-scattering plane,e=s1
+2uqW u2 tan2sue/2d /Q2d−1, eL=sQ2/ uk* u2de, uk* u is the virtual
photon c.m. momentum, andkg

* is the real photon equivalent
energy.

Determination ofsLT8 was made through the asymmetry
ALT8,

ALT8 =
d 2s+ − d 2s−

d 2s+ + d 2s− s3d

=
Î2eLs1 − ed sLT8 sin up

* sin fp
*

s0
.

s4d

The asymmetryALT8 was obtained for individual bins of
sQ2,W,cosup

* ,fp
* d by dividing the measured single spin

beam asymmetryAm by the magnitude of the electron-beam
polarizationPe,

ALT8 =
Am

Pe
, s5d

Am =
Np

+−Np
−

Np
++Np

− , s6d

where Np
± is the number of detectednp+ events for each

electron-beam helicity state, normalized to beam charge. Ac-
ceptance studies which varied the sizes of all kinematic bins
showed no significant helicity dependence, leavingAm
largely free from systematic errors. Radiative corrections
were applied for each bin using the program recently devel-
oped by Afanasevet al. for exclusive pion electroproduction
[16]. Corrections were also applied to compensate for cross
section variations over the width of each bin, using the cross-
section modelMAID2000, described below. An example of the
measuredfp

* dependence ofALT8 is shown in Fig. 2. Next,
the ALT8 distributions were multiplied by the unpolarized
pse,e8p+dn cross sections0, using a parametrization of mea-
surements ofs0 made during the same experiment[17]. The
structure functionsLT8 was then extracted using Eq.(4) by
fitting the fp

* distributions. Systematic errors forsLT8 were
dominated by uncertainties in determination of the electron-
beam polarization and the parametrization ofs0. The sys-
tematic error forAm is negligible in comparison. Quadratic
addition of the individual contributions yields a total relative
systematic error of,6% for all of our measured data points.

Figure 3 shows typical c.m. angular distributions forsLT8
at Q2=0.40 GeV2 and W=1.18−1.26 GeV. Our previous
measurement for thep0p [12] channel(top) and our new
measurement for thep+n channel(bottom) are shown com-
pared to phenomenological models by Sato and Lee(SL)
[18], the Dubna–Mainz–Taipei(DMT) group [19], and
Drechselet al. (MAID ) [20]. These models combine Breit–
Wigner-type resonant amplitudes with backgrounds arising
from Born diagrams andt-channel vector-meson exchange,
while different methods are used to satisfy unitarity. The SL
and DMT models use a reaction theory to calculate the effect
of off-shell pN rescattering. MAID uses aK-matrix approxi-
mation, by incorporating thepN scattering phase shifts[21]
into the background amplitudes and treating the rescattered
pion as on shell. All well-established resonances are included
in DMT and MAID2000, whereas SL treats only the
Ds1232d.

The measured angular distributions ofsLT8 for the p+n
channel show a strong forward peaking forW bins around
the Ds1232d, in contrast to thep0p channel, which shows
backward peaking. The calculations qualitatively describe
the peaking behavior of both thep0 andp+ channels, which
arises largely from the pion pole term(Fig. 1 and SL curves
on Fig. 3), as discussed shortly. The largest variation be-
tween the models occurs in their predictions for the overall
magnitude ofsLT8, although the variation is substantially
smaller for thep+n channel.
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A more quantitative comparison was made through fitting
the extractedsLT8 angular distributions using the Legendre
expansion,

sLT8 = D08 + D18P1scosup
* d + D28P2scosup

* d, s7d

where Plscosup
* d is the l th-order Legendre polynomial and

Dl8 is the corresponding Legendre moment. For single-pion

electroproduction, each moment can be written as an expan-
sion in magneticsMlp±d, electricsElp±d, and scalarsSlp±d pN
multipoles[22],

D08 = − ImfsM1− − M1+ + 3E1+d*S0+ + E0+
* sS1− − 2S1+d + . . .g

s8d

D18 = − 6 ImfsM1− − M1+ + 3E1+d*S1+ + E1+
* sS1− − 2S1+d + . . .g

s9d

D28 = − 12 ImfsM2− − E2−d*S1+ + . . .g, s10d

where thepN angular momentumlp combines with the
nucleon spin to give the total angular momentumJ
= lp±1/2. Theexpansion forD0,18 is truncated atlp=1, since
s,p-wave interference terms involving the resonant multi-
polesM1+ andS1+ dominate at the peak of theDs1232d. For
D28, model predictions for thep0 channel are dominated by
the lp=2 multipoles shown in Eq.(10), while higher-order
terms are important for thep+ channel.

Figure 4 shows the model predictions for theQ2 depen-
dence of the Legendre moments atW=1.22 GeV compared
to our measurements atQ2=0.4 and 0.65 GeV2. In contrast
to our previous result forD08sp

0pd [12], which strongly dis-
agreed with the MAID2000 and SL predictions, our result for
D08sp

+nd is much closer to those models. The model variation
is less pronounced, although the SL curve is still lower than
the rest, due to the much smallerS0+ multipole in this model.
Good agreement occurs forD18sp

+nd, where there is almost
no model dependence in the predictions. In contrast,D18sp

0pd
shows more model dependence, with our measurement fa-
voring MAID2000. ForD28, our results are consistent with
the model predictions in sign and overall magnitude, al-
though with large statistical errors.

The published electroproduction database is undergoing
analysis by several groups in order to better determine theQ2

dependence of the resonant multipoles which contribute to
Eqs. (8)–(10). The MAID2003 fit [23] includes recentp0

electroproduction data from Mainz, Bates, Bonn, and JLAB,
while the more comprehensiveSAID analysis[24] includes
all previously publishedp0 andp+ data. Finally, the unitary
isobar model(UIM ) of Aznauryan[25] was fitted solely to
the CLAS p0 and p+ electroproduction data(including the
current polarization data) at Q2=0.4 and 0.65 GeV2. Figure 5
shows these fits compared to theW dependence of the mea-
sured Legendre moments,D08 andD18.

The UIM fits show the best overall agreement with the
sLT8 data, especially in thep+n channel, while MAID2003
still overpredictsD08sp

0pd. This may be due to the lack of
polarization data in the global MAID fit. However, the UIM
fit also overshootsD08sp

0pd slightly below theDs1232d. The
SAID XF18/SM01 solution[26] shows a somewhat different
W dependence compared to the isobar models, which may
reflect the different method of unitarization used in the SAID
approach.

To explore the sensitivity of this polarization observable
to backgrounds, we turned off various Born terms in the
UIM calculation. First, we found that vector-meson ex-

FIG. 2. CLAS measurement of the beam asymmetryALT8 vs fp
*

for the pseW ,e8p+dn reaction atQ2=0.40 GeV2 and W=1.22 GeV.
Bin sizes wereDQ2=0.2 GeV2 and DW=0.04 GeV. The curves
show predictions from theMAID2000 model described in the text.

FIG. 3. CLAS measurements ofsLT8 vs cosup
* for the p0p

channel[12] (top) and for thep+n channel(bottom) extracted at
Q2=0.40 GeV2 and W=1.18–1.26 GeV. The curves show model
predictions discussed in the text. The shaded bars show estimated
systematic errors.
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change had only a smalls,10%d effect on the magnitude of
sLT8. On the other hand, as shown in Fig. 5, thep+n channel
is strongly sensitive to thet-channel pion pole term, while
D08sp

0pd is similarly affected by thes- andu-channel electric
and magnetic Born diagrams. Therefore, small adjustments
to the hadronic form factors or meson couplings for these
diagrams can affect the fits. Thet-channel pion pole diagram
is surprisingly important forD08sp

0pd, where it strongly af-
fects the phases of theS1+ andE1+ multipoles[13] which are
responsible for much of the predicted backward peaking in
Fig. 3. This was also verified by turning off the pole term in
the SL model(dotted curve in Fig. 3). Note the pion pole can
only influence thep0p channel as a rescattering correction
[14] via p+n→p0p, which is introduced using theK-matrix
method in UIM and MAID, or through an explicit meson-
exchange potential in dynamical models.

The generally good agreement of the UIM fits to both our
p+ andp0 data suggests that theK-matrix method of unita-

rizing the Born terms provides a consistent description of the
backgrounds in theDs1232d region. More polarization data is
needed at lowerQ2, which will allow further study of the
D08sp

0pd term in a region where model sensitivity to pion
rescattering is greatest.
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FIG. 4. TheQ2-dependence of Legendre moments ofsLT8 for
the p0p channel[12] (left) and p+n channel(right). The curves
show model predictions described in the text. The data points are
CLAS measurements showing statistical errors only.
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