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The polarized longitudinal-transverse structure functionsLT8 has been measured in theD(1232) resonance

region atQ250.40 and 0.65 GeV2. Data for thep(eW ,e8p)p0 reaction were taken at Jefferson Lab with the
CEBAF large acceptance spectrometer~CLAS! using longitudinally polarized electrons at an energy of 1.515
GeV. For the first time a complete angular distribution was measured, permitting the separation of different
nonresonant amplitudes using a partial wave analysis. Comparison with previous beam asymmetry measure-
ments at MAMI indicate a deviation from the predictedQ2 dependence ofsLT8 using recent phenomenological
models.

DOI: 10.1103/PhysRevC.68.0322XX PACS number~s!: 13.60.Le, 12.40.Nn, 13.40.Gp

The g* p→D1(1232) transition has long served as a
benchmark for testing nucleon models. In the SU(6) sym-
metric quark model, this strong magnetic dipole excitation is
described as originating from a single quark spin flip. Re-
sidual spin-dependent and tensor-type interactions between
the quarks are needed to explain theN2D mass difference
and the small quadrupole transition strength observed in par-
tial wave analyses of experimental pion electroproduction
data@1–3#. Understanding the origin of these residual inter-
actions and their role in resonance formation and decay is a
fundamental challenge for modern QCD-inspired hadronic
models.

In particular, the dynamical effects of the pion cloud are
predicted to strongly modify the electromagnetic couplings
at sufficiently low Q2. Chiral-quark and bag models that
incorporate pion couplings@4–7# generally describe the
D(1232) photocoupling multipoles better than a purely
quark/gluon framework@8,9#. Recent dynamical models de-
rived from effective chiral Lagrangians explicitly treat pion
multiple scattering@10,11# and predict strong modifications
to both resonant and nonresonant amplitudes. The role of the
pion cloud in electromagnetic interactions is also being stud-
ied using heavy baryon chiral perturbation theory@12# and
unquenched lattice QCD@13#.

Unfortunately, cross section measurements alone do not
provide sufficient information to separate theD(1232) exci-
tation reaction mechanisms from nonresonant backgrounds
and the tails of higher-mass resonances. Single spin polariza-
tion observables, on the other hand, are directly sensitive to
the interference between resonant and nonresonant processes
and together with precise cross sections can provide power-
ful constraints to models.

In this Rapid Communication we report new measure-
ments of the longitudinal-transverse polarized structure func-
tion sLT8 obtained in theD(1232) resonance region using
the p(eW ,e8p)p0 reaction. Recent measurements of polariza-

tion observables@14–17# and unpolarized cross sections
@2,18# for Q2,0.2 GeV2 show disagreement with some dy-
namical models near theD(1232) peak. However, so far
only narrow angular and kinematic ranges have been studied,
yielding few clues as to the origin of the discrepancy. The
present experiment was performed at four-momentum trans-
fersQ250.40 and 0.65 GeV2 and covers a range of invariant
massW51.121.3 GeV with full angular coverage in cosup*
andfp* in the pp0 center of mass~c.m.!.

The data were taken at the Thomas Jefferson National
Accelerator Facility ~Jefferson Lab! using a 1.515 GeV,
100% duty-cycle beam of longitudinally polarized electrons
incident on liquid hydrogen target. The electron polarization
was determined by frequent Mo” ller polarimeter measure-
ments to be 0.6960.009(stat)60.013(syst). Scattered elec-
trons and protons were detected in the CLAS spectrometer
@19#. Electron triggers were enabled through a hardware co-
incidence of the gas Cerenkov counters and the lead-
scintillator electromagnetic calorimeters. Protons were iden-
tified using momentum reconstruction in the tracking system
and time of flight from the target to the scintillators. Soft-
ware fiducial cuts were used to exclude regions of nonuni-
form detector response. Kinematic corrections were applied
to compensate for drift chamber misalignments. Thepp0

final state was identified by requiring the missing neutral to
have a mass squared between20.01 and 0.05 GeV2. Back-
ground from elastic Bethe-Heitler radiation was suppressed
to below 1% using a combination of cuts on missing mass
and fp* near fp* 50°. Target window backgrounds were
suppressed with cuts on the reconstructede8p target vertex.

In the one-photon-exchange approximation, the electro-
production cross section factorizes as follows:

d 5s

dEe8dVe8dVp*
5Gv

d 2sh

dVp*
, ~1!
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whereGv is the virtual photon flux andd2sh is the differen-
tial cross section forg* p→pp0 with electron beam helicity
(h561). For an unpolarized target,d 2sh depends on the
transverse (e) and longitudinal (eL) polarization of the vir-
tual photon through five structure functions:sT ,sL , and
their interference termssTT , sLT , andsLT8 :

d2sh

dVp*
5

pp*

kg*
@s01hA2eL~12e! sLT8sinup* sinfp* #,

s05sT1eLsL1esTTsin2up* cos 2fp*

1A2eL~11e! sLTsinup* cosfp* , ~2!

where (pp* ,up* ,fp* ) are thepo c.m. momentum, polar, and

azimuthal angles, e5@112uqW u2tan2(ue/2)/Q2#21, eL

5(Q2/uk* u2)e, andkg* and uk* u are the virtual photon c.m.
momentum and equivalent energy.

The structure functionssLT and sLT8 determine the real
and imaginary parts of bilinear products between longitudi-
nal and transverse amplitudes:

sLT : Re~L* T!5Re~L !Re~T!1Im~L !Im~T!, ~3!

sLT8 : Im~L* T!5Re~L !Im~T!2Im~L !Re~T!. ~4!

Detection of a weak nonresonant background underlying the
peak of theD(1232) can be enhanced through its interfer-
ence insLT8 with the strong transverse magnetic multipole
Im(M11). Sensitivity to real backgrounds is suppressed in
sLT due to the vanishing of Re(M11) at the resonance pole.

Extraction ofsLT8 was made through a measurement of
the electron beam asymmetryALT8 :

ALT85
d2s12d2s2

d2s11d2s2
~5!

5
A2eL~12e!sLT8sinup* sinfp*

s0
. ~6!

ALT8 was obtained by dividing the measured asymmetryAm
by the magnitude of the electron beam polarizationPe :

ALT85
Am

Pe
, ~7!

Am5
Np

12Np
2

Np
11Np

2
, ~8!

whereNp
6 is the number ofp0 events per incident electron

for each electron beam helicity state.ALT8 was determined
for individual bins of (Q2,W,cosup* ,fp* ). Normalization fac-
tors cancel in Eq.~6!, and since acceptance studies showed
no significant helicity or bin size dependence, acceptance
factors canceled inAm as well. This leavesAm largely free
from systematic errors. Radiative corrections were applied
for each bin using the program recently developed by Afa-
nasevet al. for exclusive pion electroproduction@20#. Cor-

rections were also applied to compensate for cross section
variations over the width of each bin. The correctedALT8
was multiplied by the unpolarized cross sections0. A pa-
rametrization ofs0 was used, which was obtained from the
SAID PR01 solution @21# fitted to previously measured
CLAS data and world data. The structure functionsLT8 was
then extracted using Eq.~6! by fitting the fp* distributions.
Systematic errors forsLT8 were dominated by uncertainties
in determination of the electron beam polarization and the
parametrized unpolarized cross sections0. The systematic
error for Am is negligible in comparison. Quadratic addition
of the individual contributions yields a total relative system-
atic error of,6%.

Figure 1 showssLT8 extracted atQ250.40 GeV2 and
Q250.65 GeV2, where the cosup* dependence is plotted for
W bins of 1.18, 1.22, and 1.26 GeV. The measured angular
distributions show a strong backward peaking forW bins
around theD(1232) mass. The curves show predictions from
recent models@10,22,23# which use different methods to sat-
isfy unitarity in thep0p final state. These models, which are
fitted to previous photoproduction and unpolarized electro-
production data, include backgrounds arising from Born dia-
grams andt-channel vector meson exchange. The Sato-Lee
@10# and Dubna-Mainz-Taipei@22# ~DMT! models use an
off-shell pN reaction theory to calculate unitarity correc-
tions, while the more phenomenological MAID2000 model
@23# incorporatespN phases directly into the background
amplitudes. While the models describe the data qualitatively,
none of the calculations is able to describe both the overall
magnitude and the slope of the measured c.m. angular distri-
butions consistently.

A more quantitative comparison was made through fitting
the extractedsLT8 angular distributions using the Legendre
expansion:

FIG. 1. CLAS measurement (d) of sLT8 vs cosup* extracted at
Q250.40 GeV2 ~top! and Q250.65 GeV2 ~bottom!. Curves show
model predictions. Shaded bars show systematic errors.
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sLT85D081D18P1~cosup* !1D28P2~cosup* !, ~9!

wherePl(cosup* ) is the l th-order Legendre polynomial and
Dl8 is the corresponding Legendre moment. Each moment
can be decomposed into interference terms involving the
leading-order magnetic (Ml p6), electric (El p6), and scalar

(Sl p6) multipoles:

D0852Im@~M122M1113E11!* S011E01* ~S1222S11!

1•••# ~10!

D18526 Im@~M122M111E11!* S111E11* S121•••#
~11!

D285212 Im@~M222E22!* S1112E11* S221•••#,
~12!

wherel p is thep0p angular momentum whose coupling with
the nucleon spin is indicated by6.

Figure 2 shows typical fits tosLT8 angular distributions
near the peak of theD(1232) resonance~left!, while theQ2

dependence of the extracted Legendre moments is compared
to model predictions~right!. The largest disagreement with
models clearly occurs forD08 , which is dominated by inter-
ference terms involvings-wave pN multipoles. The CLAS
data also requireD28Þ0. The fittedD28 strength has the same
sign and overall magnitude as the model predictions, al-
though we cannot differentiate between the models due to

large statistical uncertainties. No evidence ford waves was
observed in our measurement ofsLT @1#.

We also compare our fit results with a recent MAMI mea-
surement @16# of the beam asymmetryALT8 at Q2

50.2 GeV2. The published MAMI angular distribution was
converted tosLT8 using Eq.~6! and MAID2000 for the un-
polarized cross sections0. Since the MAMI data do not
have sufficient angular coverage to determineD28 , the fit was
performed by constrainingD28 relative to D18 using
MAID2000. With D28 fixed, the remaining Legendre mo-
ments estimated from the MAMI data can be compared to
the Q2 trend of the CLAS data~Fig. 2, right!. Both datasets
suggest an anomalous behavior forD08 with respect to the
models. However, a recent Bates measurement@17# of sLT8
at Q250.127 GeV2 and up* 5129° found good agreement
with MAID2000 and DMT, although no angular distributions
were reported.

Figures 3 and 4 show theW dependence of the fitted
Legendre moments,D08 andD18 , respectively. Both moments
show strong resonant behavior, suggesting dominance of in-
terference terms involving the multipoles of theD(1232).
Our measurement ofD08 is substantially below the predic-
tions of MAID2000, and in closer agreement with the DMT
dynamical model atW51.18 GeV, while the Sato-Lee pre-
diction is smaller still. For increasingW, our data fall below
the DMT curve, while none of the models describes theW
dependence well. Note that contributions of higher reso-
nances toD08 are negligible except nearW51.30 GeV. Fig-
ure 4 shows the fit results forD18 . Here our comparison with
models shows someQ2 dependence. Better agreement with
the dynamical models occurs below theD(1232) at Q2

50.4 GeV2, while atQ250.65 GeV2 all of theW points are
systematically larger than the predictions.

The large differences between the model predictions for

FIG. 2. Left: Fits to sLT8 angular distributions measured by
CLAS ~middle, bottom! and MAMI ~top! at W51232 GeV using
Eq. ~9!. See text for details. Right:Q2 dependence of Legendre
moments ofsLT8 . Curves show model predictions. Data points are
the present CLAS measurement. Vertical bars atQ250.2 GeV2

show moments obtained from model constrained fits to MAMI
data@16#.

FIG. 3. CLAS measurement (d) of Legendre momentD08 vs
W ~GeV!. Curves show recent model calculations that include con-
tributions from multipoles up to angular momentuml p55. Shaded
bars show systematic errors.
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D08 arise from the term Im(M11* S01), which produces 70%–

75% of the total strength in MAID2000. In contrast,D18 is
more sensitive to higher resonances, which contribute 15%–
20% in MAID2000 @coming mainly from Im(M12* S11)],
while Im(M11* S11) accounts for'40% of the total strength.
The S01 multipole is an important background affecting the

extraction of theg* p→D(1232) C2 Coulomb quadrupole
transition, and is sensitive to choices ofpNN coupling and
contributions from final statepN rescattering@23#. Unfortu-
nately, a simple rescaling of theS01 strength, as suggested in
Ref. @16#, is not sufficient to account for the inferredQ2

dependence ofD08 .
In summary, complete angular distributions for the polar-

ized structure functionsLT8 were measured for the first time,

using thep(eW ,e8p)p0 reaction. In accordance with measure-
ments at lowerQ2 @14–17#, evidence for significant nonreso-
nant background in theD(1232) region is seen. A departure
from the predictedQ2 dependence of various effective La-
grangian based models is seen at theD(1232) peak when the
CLAS data are compared to the MAMI data atQ2

50.2 GeV2. Examination of the Legendre momentsD08 and
D18 shows the discrepancies are largest forD08 . CLAS mea-
surements in theQ2 range of 0.1–0.4 GeV2 and also forW
.1.3 GeV are currently being analyzed to provide more in-
formation on the form factors of the underlying multipoles.
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