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Diagnosis of the phase function 
of random media from light 
reflectance
Min Xu

Light reflectance has been widely used to diagnose random media in both in situ and in vivo 
applications. The quantification of the phase function of the medium from reflectance measurements, 
however, remains elusive due to the lack of an explicit connection between the light reflectance profile 
and the phase function. Here we first present an analytical model for reflectance of scattered light at an 
arbitrary source-detector separation by forward-peaked scattering media such as biological tissue and 
cells. The model incorporates the improved small-angle scattering approximation (SAA) to radiative 
transfer for sub-diffusive light reflectance and expresses the dependence of the light reflectance on 
the phase function of the scattering medium in a closed form. A spreading length scale, lΘ, is found to 
characterise subdiffusive light reflectance at the high spatial frequency (close separation) limit. After 
validation by Monte Carlo simulations, we then demonstrate the application of the model in accurate 
determination of the complete set of optical properties and the phase function of a turbid medium from 
the profile of subdiffusive and diffusive light reflectance.

Elastic scattering of light has long been used to diagnose the random medium. Reflectance spectroscopy and 
imaging is a widely used noninvasive method to measure the optical properties of random media such as atmos-
phere, ocean, and tissue, including the absorption coefficient (μa) and the reduced scattering coefficient  
µ′( )s . These parameters provide valuable information regarding the microarchitecture and biochemical composi-

tion of the medium and has been applied in, for example, cloud remote sensing1, monitoring cell apoptosis2, skin 
characterisation3, and cancer detection4. The quantification of the phase function of the medium, which describes 
the angular distribution of the scattered light upon single interaction with the medium and contains the ultimate 
information about the microenvironment of the medium, from reflectance measurements, however, remains 
elusive. Reflectance of scattered light is inherently a difficult problem as light propagation in a random medium is 
governed by radiative transfer (RT)5 and the commonly adopted diffusion approximation to RT breaks down at a 
short source-detector separation6. There is a tremendous need for an accurate analytical model of reflectance at 
an arbitrary source-detector separation, amenable for rapid quantitative assessment of optical properties and in 
particular, the phase function of a random medium. Some empirical models for reflectance at a close 
source-detector separation were proposed recently with limited applicable domains7,8. As the phase function of 
the scattering medium impacts significantly sub-diffusive reflectance at a close source-detector separation, an 
analytical model which can relate explicitly sub-diffusive reflectance to the phase function and can recover the 
complete set of optical parameters (including the phase function) of the random media from the reflectance pro-
file is hence greatly desirable.

In the present work, we report here an analytical model for reflectance of scattered light at an arbitrary 
source-detector separation by forward-peaked scattering media and its application in diagnosis of the phase func-
tion of such media. The model incorporates the small-angle scattering approximation (SAA) to radiative transfer 
for sub-diffusive light reflectance at a close source-detector separation and expresses the dependence of the light 
reflectance on the phase function of the scattering medium in a closed form. The performance of the model is 
then verified by Monte Carlo simulations. The application of the proposed model in diagnosis of random medium 
is demonstrated at the end with an emphasis on determining the phase function of the scattering medium.
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Results and Discussion
Consider light reflectance of a collimated beam incident along the direction 

^s zin  and backscattered in the 
direction − ^s zout  by a forward-peaked scattering medium with the interface at z =  0. In such media, the 
non-diffuse photons have only encountered a small number of large angle scattering and will be classified into the 
nth order non-diffuse photons by the number, n, of large angle scattering. The leading contribution is due to the 
first order non-diffuse photons which have experienced multiple small angle scattering and exactly one large 
angle scattering and can be described in a closed form using the small angle scattering approximation to radiative 
transfer9. The first order non-diffuse photons will be called SAA photons. The second order non-diffuse photons 
(“snake” photons) dominate in coherent backscattering (CBS) as SAA photons are commonly suppressed in CBS 
measurements in the circular polarisation preserved channel10,11.

Backscattering of SAA photons is mainly determined by the spread of the scattering angles in the forward 
directions and the backscattering efficiency. The phase function p(θ) (normalised as ∫π θ θ θ =

π p d2 ( )sin 1
0

) of the 
scattering medium is assumed to split into a forward-peaked component and an isotropic scattering one, i.e., 
pSAA(θ) =  (1 −  2pb)pForward(θ) +  (2π)−1pb p( 1)b . The SAA spread function for a collimated beam in the direc-
tion s0 incident at the origin (r =  0) on a stratified medium to reach the depth z is given by12:

∫
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where q is the spatial frequency on the xy plane, s⊥0 is the projection of s0 on the interface, μt ≡  μs +  μa with μs 
being the scattering coefficient, and χ(v, z) is the 2D Fourier transform of (1 −  2pb)pForward(θ, z). We can recognise 
S contains contributions from all scattering orders …0,1,  by expanding the second exponential term to 
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where the backscattering coefficient μb ≡  μs(z)p(π, z), s⊥ ≡  s⊥in +  s⊥out with s⊥in and s⊥out being the incident and 
remission angles, respectively, Seff is the spread function for an effective medium with an identical phase function 
and twice absorption and scattering, and Seff′ is the spread function for a second effective medium with an identi-
cal phase function and scattering whereas the absorption coefficient being modified to 2μa +  2pbμs. The second 
term in equation (2) accounts for the extra contribution when the photon enters or escapes the medium taking 
the isotropic rather than forward scattering route whose probabilities are piso and 1 −  piso 

p( 1)iso , respectively 
(see Fig. 1a and Supplementary Materials Sec. I). The inclusion of the second term in the improved small-angle 
scattering approximation increases significantly the accuracy of ISAA (see Fig. 1b). The second term is absent in the 

Figure 1. (a) Backscattering of the first order non-diffuse photons which encounter multiple small-angle 
scattering (“red” scatterers) and one single large angle scattering (“blue” scatterer). The photon may take 
the isotropic (dashed lines) vs forward scattering (solid lines) route with the probability of piso and 1 −  piso, 
respectively, at the first or last scattering event. (b) The inclusion of Seff′ improves the accuracy of SAA. The 
comparison to Monte Carlo simulations for light reflectance from polystyrene sphere suspensions of diameter 
1.5 μm in water is shown. The wavelength of the incident light is 0.515 μm.
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conventional small-angle approximation to radiative transfer12. Note the ballistic term in Seff′ should be removed 
to avoid double counting.

For simplicity, we will limit the discussion to a uniform semi-infinite medium and further assume pForward(θ) 
is Gaussian hereafter. This choice is justified by first pForward(θ) is dominated by large scattering structures which 
scatter light mainly through Fraunhofer diffraction with a Gaussian angular dependence near the forward direc-
tion and second the summation of the forward scattering phase function from many different scattering struc-
tures in a complex biological system approaches a Gaussian function according to the central limit theorem13. 
Other forms of pForward may be used and the Gaussian form offers a balance between simplicity and performance. 
The arbitrary phase function p(θ) of the scattering medium will be mapped to (see Supplementary Materials Sec. II):
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The nth order moment of pSAA is given by − 
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2 . In particular, the anisotropy factor 
(n =  1) is
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The value of pb is determined by how light is backscattered into the back hemisphere whereas the backscat-
tering coefficient μb depends on the phase function at the 180 degree which is typically different from pb. The 
probabilities for photons being forward or isotropically scattered are 1 −  2pb and 2pb, respectively. The parameter 
piso =  2pb in equation (2). The spread function (1) reduces to
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where erf is the error function. The reflectance of the SAA photons (2) incorporates contributions from all 
moments of the phase function in contrast to other approximate solutions to radiative transfer which truncate 
the order of the moments of the phase function14. The inclusion of higher order moments of the phase func-
tion is critical to accurately describe photon migration at a close source-detector separation or a high spatial 
frequency6,15.

The expression of pSAA is consistent with the unified Mie and fractal model of light scattering by tissue and 
cells16–18. The Gaussian term captures the contribution from Mie scatterers whereas the isotropic scattering term 
is associated with the refractive index fluctuation of the background. The mean squared root scattering angle Θ  
tends to decrease with the size of Mie scatterers (large structures) in tissue and cells.

The reflectance ISAA(q) given in equations (2) and (7) and its inverse 2D Fourier transform ρ =I ( )SAA

∫ ρπ ⋅− q q qd i I(2 ) exp( ) ( )2
SAA  represent the main expressions for SAA photons, governing subdiffusive light 

reflectance. In the typical setup with normal incidence and detection, s⊥ =  0. When µ′q s  and ρµ′  1s , the 
reflectance reduces to (see Supplementary Materials Sec. III):
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where µ µ µ′ ≡ + p2t a b s, δ(·) is te Dirac-Delta function, and the spreading length scale lΘ ≡  Θ /μs. The first term 
in the bracket in equations (8) and (9) is the ballistic contribution.

The expressions for the snake and diffuse photons have been derived earlier10,19 and the more general form 
allowing absorption is given here:
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a s , µ µ′ ≡ − g(1 )s s  with g being the anisotropy factor, and G(snake, diffusion) is the Green’s function 

for snake and diffusion photons, respectively. The snake Green’s function, given by ′ =r rG ( , )(snake)  
β π− | − ′| | − ′|r r r rexp( )/4 2, is the ballistic propagator for an isotropic source inside an isotropically scattering 

turbid medium. In the Fourier domain, the reflectance for snake and diffuse photons is simply:
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where µ µ≡ + ′Q q 3 a s
2  and ze is the extrapolation length dependent on the refractive index mismatch at the 

interface20.
Figure 2 compares light reflectance by SAA, snake, and diffuse photons with the results from Electric field 

Monte Carlo simulations21 in both spatial and Fourier domains for polystyrene sphere suspensions of diameter 
1.5 μm (without and with absorption: µ µ′ = ./ 0, 0 16a s ) and 0.49 μm (no absorption) in water. The parameters for 
the mapped pSAA is computed from the original phase function by equations (4) and (5). In Monte Carlo simula-
tions, the total number of incident photons is set to 106 and the refractive indices of the semi-infinite medium and 
the surrounding are assumed to be matched. The absorption of the scattering medium is introduced by assigning 
a non-zero imaginary part to the refractive index of the polystyrene particle. The mapped SAA parameters are 
pb =  0.0177 and Θ  =  0.451, pb =  0.0171 and Θ  =  0.447, and pb =  0.0194 and Θ  =  0.587, respectively (Fig. 2 top 
row). The SAA photons and the combined snake and diffuse photons, respectively, describes well the reflectance 
at short and large µ ρ′( )s  separations in the real space (Fig. 2 middle row) and at high and low µ′q( / )s  spatial fre-
quencies in the Fourier domain (Fig. 2 bottom row).

The total light reflectance is given by the sum of contributions from both non-diffuse and diffuse photons. For 
the arbitrary separation and over the full spatial frequency domain, the reflectance profile can be split into low 
and high spatial frequency regimes specified by their respective limits, i.e.,

µ µ
=






+ + <

>
q

q q
q

I
I I q q
I q q

( )
( ) ( ) /2
( ) (13)

b t c

c
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where at qc ~ 2πβ the two limits intersect. The diffuse and non-diffuse expressions should be applied in their 
respective domains. The term μb/2μt in the low spatial frequency expression originates from the ballistic contri-
bution of SAA photons. This split is consistent with the observation10 of a universal radial profile independent of 
the specific form of the phase function for light backscattering at a separation larger than β−1. A matched refrac-
tive index has been assumed at the interface here. When there is an index-mismatch, the specular reflection at the 
entry into the semi-infinite medium can be easily taken into account by multiplying the reflectance I(q) in equa-
tion (13) with the transmission coefficient = − − +T n n1 ( 1) /( 1)2 2 where n is the relative refractive index 
between the two media at the interface; furthermore, the SAA, snake photons and the ballistic term, ISAA, Isnake and 
μb/2μt, respectively, will be attenuated by T again when escaping the medium and the extrapolation length ze for 
the diffuse photons will vary with the mismatch. It should also be pointed out that our formalism is limited to 
scalar photons. The polarization effect of photons can be incorporated following the recipe given in Xu and 
Alfano22,23.

Expression (13) provides an excellent description of light reflectance from a forward-peaked scattering 
medium of the anisotropy factor  .g 0 85 and low to moderate absorption µ µ′ <( / 1)a s . The merit of match 
between the model and results from Monte Carlo simulations computed over µ≤ ′ ≤q0 / 100s  in Fourier space is 
shown in Table 1. Here merit of match between the model and Monte Carlo simulations is defined by

= −R 1 SSR
SST (14)

2

where = ∑ −SSR (log I log I )model MC
2 is the squared error of the model and = ∑ −I ISST (log log )MC MC

2 is 
the variation of the truth with Ilog MC being the average of log IMC. A value of R2 =  1 means a perfect match 
between the model and the truth. When absorption increases µ µ′( / 1)a s  such that photons no longer completely 
randomise in their propagation directions or light scattering in the medium is not forward-peaked, the accuracy 
of equation (13) deteriorates.

The closed form light reflectance (13) and the limit forms (8,9) reveal that in addition to the well known trans-
port mean free path lt =  1/(1 −  g)μs which governs light diffusion and the reflectance at low spatial frequency 
(large separation), there is a new spreading length scale lΘ ≡  Θ /μs which characterises subdiffusive light reflec-
tance at high spatial frequency (close separation) solely determined by the angular width of the forward-peaked 
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component of the phase function. The two length scales are further inherently connected via equation (6) for a 
forward-peaked scattering medium, satisfying approximately µ =Θl l 2s t

3 2 . Light reflectance at high frequency 
(close separation) provides a convenient measure of lΘ via equations (8) and (9). Figure 3 shows the fitting of 
equation (8) to Monte Carlo simulations for polystyrene suspensions displayed in Fig. (2). The angular spread Θ  
of light scattering is determined with accuracy of 2.4%, 3.6%, and 5.6%, respectively.

Figure 2. Light reflectance by SAA, snake, and diffuse photons compared with the results from Monte Carlo 
simulations for polystyrene sphere suspensions of diameter 1.5 μm ((a,d,g): no absorption, (b,e,h): µ µ′ = ./ 0 16a s ;  
g =  0.92) and diameter 0.49 μm ((c,f,i): no absorption, g =  0.86) in water. The wavelength of the incident light is 
0.515 μm. The top row shows the SAA phase function used to approximate the exact Mie phase function. The 
middle row shows the spatial profile of the reflectance at the radial position ρ from a normally incident 
collimated beam at the origin. The bottom row shows the reflectance for normally incident spatially modulated 
plane wave with a spatial modulation frequency q. Light reflectance in (d–i) is computed directly based on the 
mapped SAA phase function without any free adjustable parameters.

d = 1.50 μm, μa = 0
d = 1.50 μm, 
µ µ= . ′0 16a s d = 0.49 μm, μa = 0

R2 0.9915 0.9877 0.9668

Table 1.  Merit of match between the model and Monte Carlo simulations for polystyrene sphere 
suspensions (diameter d and absorption μa). The value of R2 =  1 means a perfect match between the model 
and the truth.
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Moreover, the complete set of the optical properties of the turbid medium can be determined accurately by 
fitting to light reflectance at both low and high spatial frequencies. The set of parameters includes the mapped 
SAA phase function (3) completely defined by the angular spread Θ  of scattering and the isotropic scattering 
background pb for an arbitrary phase function of the scattering medium, the backscattering coefficient μb, the 
scattering coefficient μs, the absorption coefficient μa, and the anisotropy factor g. As one example, the fitted 
parameters from light reflectance simulated by Monte Carlo simulations for the polystyrene sphere suspension 
(d =  1.50 μm, µ µ′ = ./ 0 16a s ) is shown in Table 2. The values of μb/μs, μa/μs and Θ /μs are first fitted from subdiffu-
sive light reflectance and then the full set of optical parameters are fitted against both subdiffusive and diffusive 
light reflectance profile with least square curve fitting when fixing μb/μs and setting g =  (1 −  2pb)(1 −  Θ 2/2). The 
complete set of optical parameters determined from light reflectance agree well with their theoretical values. In 
particular, the accuracy of the extracted scattering properties and phase function parameters (μs, g and Θ ) is 
remarkable which can be partly attributed to the inherent constraint (6) between g and Θ , which characterises 
diffusive and subdiffusive light reflectance respectively, imposed by a forward-peaked scattering medium.

Summary
In summary, we have presented here an analytical model describing light reflectance at an arbitrary 
source-detector separation from forward-peaked scattering media and its application in diagnosis of the phase 
function of such media. The model incorporates the small-angle scattering approximation to radiative transfer 
for sub-diffusive light reflectance. This analytical model exhibits excellent performance over the whole spatial 
length scales when light absorption is weak to moderate. The application of the model in accurate determination 
of the optical properties and the phase function of a turbid medium from the profile of subdiffusive and diffusive 
light reflectance has also been successfully demonstrated. The phase function of a scattering medium carries 
the ultimate information about the morphology and optical properties of the individual scatterers which can be 
probed remotely. The diagnosis of the phase function, furthermore, can be used to predict light propagation and 
detect minute structural alterations or heterogeneities inside a random medium. With the recent development 
such as the spatially modulated illumination24, both subdiffusive and diffusive light reflectance over a wide field 
can be easily assessed. This enables a rapid quantification of the complete set of the optical properties, including 
the phase function, of the scattering media using the proposed analytical model. Such noninvasive approach will 
hence find important applications in biomedical optics and remote sensing, in general, for diagnosis of tissue and 
other forward-peaked scattering media from light reflectance measurements.
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