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1. INTRODUCTION

In a smectic liquid crystal the molecules assemble them-
selves into periodic layered structures. By convention, the
[ layer normal defines the z axis of the system. The molecules

of the liquid crystal are anisotropic, which often leads to
t pronounced birefringence effects. For the systems we will
consider, the molecules can be viewed as elongated ellip-
soids, in which case the long iaxis of the molecule coincides
with the extraordinary index of‘refraction.

In the smectic-A (Sm-A) phase, the average orientation of
the long axis of the molecules is parallel to the layer normal.
In the Sm-C phases, the orientation. tilts and develops a com-
ponent perpendicular to thelayer normal. In the Sm-C phase
itself, the molecules all tilt in the same direction throughout
the sample. In a chiral material, on the other hand, as one
moves along the z axis, the tilt direction precesses about the
layer normal with a period much larger than the layer spac-
ing. This is known as the Sm-C * phase. Because these mol-
ecyles lack a center of inversion, the Sm-C* phase can pos-
sess a spontaneous ferroelectric  polarization [1]. This
polarization couples strongly to an appli'ed electric field
which has applications in the manufacture ‘of optical devices.

Ferroclinic phases are liquid crystal phases where the av-
erage tilt vector points in the same direction from layer to
layer, ignoring any rotations due to the, chirality (the tilt vec-
tor is defined as the vector djfferenc; between the director
and the layer normal). In antiferroclinic phases, on the other
hand, the tilt vector changes direction between adjacent lay-
ers ¢ /= ¢ ¢+1- Ferriclinic phases are the intermediate case
‘ where the tilt vector is neither parallel nor antiparallel to the
I adjacent layers. In the chiral materials we consider below,
‘ these phases also possess spontaneous polarizations; chiral
\

|
|
1
|

ferroclinics are necessarily also ferroelectric, etc.
. Subphases of the ferroclinic (ferroelectric) Sm-C* phase
fi§ have been observed in materials such as 4-(1-
T ' methylheptyloxycarbonyl) phenyl 4’ -gctylbiphenyl
@ 4-carboxylate (MHPOBC). These subphases are known to
]ﬁ include at least one antiferroclinic phase (Sm-Cy) as well as
¥ 4 ferriclinic (Sm-C,) phase and the uncharacterized Sm-C,
' phase. In other materials, additional ferriclinic and antiferro-
it clinic subphases have been reported in the literature as well
ﬁ [2,3]. The Sm-C, ferriclinic phase is believed [4,5] to be
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By considering short period helical planar modulations about the layer normal, we construct a model free
energy for the ferriclinic phases observed in chiral smectic liquid crystals. We then use this free energy to
construct the phase diagram for our model. The resulting phases are compared with the experimentally ob-
‘. served smectic-C* subphases (ferroclinic, antiferroclinic,
' the ferroclinic g=27/a and the heliclinic g=2/3a modes. This coupling was not considered in previous
models. The resulting additional stability of this ‘‘locked in”’ phase is discussed. [S1063-651X(99)10607-X]

and heliclinic). A strong coupling is found between

formed from a repeating three-layer unit with two parallel
and one antiparallel tilts (a *“+ + —++ —""-type structure).
Recent experimental evidence [6] suggests that other ferri-
clinic phases with three-layer and four-layer repeat units ex-
ist as, well. To date, neither the structure of the Sm-C, phase
nor the structure of the majority of the other ferriclinic
phases have be¢n experimentally determined.

Nevertheless, several models have been put forward to
explain the variety of structures seen in the ferriclinic phases
of chiral smectic liquid crystals. One set of models predict
that the form of the ferroclinic phase(s) is a ‘‘Devil’s stair-
case’’ with a formally infinite series of abrupt step-by-step
changes [7-9] between the completely parallel ordering of
the Sm-C* and the completely antiparallel ordering of the
Sm-C 4 phases. These models generally consider the system
to be in a superposition of ferroclinic and antiferroclinic or-
dering and progress step by step (much like an Ising model)
by rotating the polarization of an entire layer by 180°. The
other set of models are discrete phenomenological models
[10,11] with competition between nearest and next-nearest
neighbor interactions leading to a continudusly unwinding
pitch, from ferroclinic, through ferriclinic, to antiferroclinic.
A variation on this general approach was proposed by Lor-
man et gl.[12] that shows a variety of discreet phases instead
of the.single continuoys phase.

As mentioned above, a common feature of models based
on the Devil’s staircase is that they assume that for lengths
on the order of a few times the layer spacing the molecules
always remain in a single plane: the molecules are either
parallel or antiparallel. While this is certainly what is ob-
served in the Sm-C* and Sm-C, phases, there is.no reason
to assume, a priori, that this is the only possibility. The
discrete models on the other hand, while they do allow for
rotations about the layer normal, have used simple.gxpres-
sions for the fourth order terms in the free energy and seldom
show a very wide variety of possible phase transitions. To
the best of our knowledge, no one has previously’looked at
the implications of including fourth order terms that are sym-
metry altowed and provide strong couplings between differ-
ent Fourier cémponents.

In this paper, we introduce a free enérgy that is more
general than the one previously considered [11,12] for rota-
tions about the layer normal (Sec. I0). From this, we derive
the phase diagrams and structural organization when the or-

1799 © 1999 The American Physical Society
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der parameter is nonzero. The possibility of finding a large
number of distinct phases (like the Devil’s staircase and con-
sistent with experimental observations of periods three times
the layer spacing) will be démonstrated in Sec. V.

II. A MODEL FREE ENERGY

We begin by considering the the Sm-C* phase, which we
choose to view as a system of layer-averaged tilt vectors.
The tilt vectors are constrained to point perpendicular to the
layer normal and the magnitude of the tilt vector is equal to
the sine of the tilt angle. To simplify the model, we imme-
diately assume that this is a bulk system so that surfaces can
safely be ignored. Further, we will work in the mean-field
limit-which assumes’ that the layers are completely uniform
so that all the gradient terms in the free energy are identically
zero. We now will demonstrate how the ferriclinic phases
can be modeled as a series of helical modulations of the
average tilt vector. These phases are what we collectively
refer to as heliclinic phases, since the tilt vector rotates in a
helical fashion along the z axis (the layer normal).

The Landau free energy of a system is constructed by
summing together all the symmetry-allowed combinations of
the average tilt vector per layer tultiplied by some set of
(phenomenological) Landau coefficients. Constructing the
Landau free energy for our model system up to fourth order,
we find

F=2 ARG §)+APExS) 2

J=i

1
*3 2 2 BiniSe 8B Sn+o(s®), (1)

Jsi Isk

where the sums range over all layers in the system. The

vector § 1 is the average tilt vector for the I/th layer. While this
is a break with convention (smectlc tilt vectors are normally

written as c), we will use § throughout this paper to help
draw out the similarities between this model and simple
magnetic models. The A(” and the A(z) are, by convention,
assumed to vary with temperature wh11e the B; ; ;. ; are con-
sidered constants. Further, we assume that the A’s and the
B’s are short ranged, which is what is observed experimen-
tally. The chiral term (§i-§ j)(§kx .§,) is also symmetry al-
lowed, but we assume that this term is small and may be
ignored, due to its chiral nature. Any (§ X§ i) (§kX 5‘,) term
is nonchiral and can be transformed into terms we have als
ready included. If we limit interactions to only next—nearest
neighbofs, then the second order terms in Eq. 1) are the
same as those in the free energy discussed by CepiC and Zeks
[11]. In this paper, however, we allow for fourth order terms

beyond the (S - $)? term used in [11]. These terms provide an
important coupling between-specific Fourier modes and must
be included in a proper analysis.

Taking the Fourier transform of Eq. (1),
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FIG. 1. Example of a heliclinic phase (k=2m/4a in this ex-
ample).

s

F= ; ar(Se~S_1) + b8+ S_p)?

+2 2 > Ck,k’,k”(s:k'§k’)(§k"'§—k—k'—k")

ko k' K"+k
+0(S°%), 2)

. where the sum is over wave vectors k=27/na, n==*1,

+2.+3, ..., and a is the smectic layer spacing (see Fig. 1).
The sixth order terms are expected to be small and will not
be cons1dered further. Defining ‘g=2m/a, it is eas11y seen

that S is the ferrochmc order parameter of the smectic (S is
an X Y spin), while § o2 18 the antiferroclinic order parameter.

What we call Sq is often written SO, but to better illustrate
the relationship. between the different wave vectors, we will

-

always refer to the ferroclinic order parameter as S,.

The next teriny'S q13» we call the heliclihic order parameter,
which is sitnilar to the order parameter for the planar
helimagnetic phases observed in some rare-earth magnetic
materials such as Terbium [13]. The fourth order term

(S S _q,3)(S_q,3 S_q,3) provxdes a direct coupling (mdde

locking) between the S and § g3 order parameters. We will
show below that the phase of this term can always be chosen

so that this term has a negative coefficient and thus if §q,3 i

present it will become energetically favorable for S q 0 have
a nonzero magmtude as well. This mode locking extends the
range over which it is energetically favorable to have a fef-
roclinic component. This extra stabilizing term has important
consequences when we construct the phase diagram. Because
additional terms are likely to be small and because we wish
to avoid the difficulties inherent ina full-blown field theory,
we will assume from here on that we are working in a region
of the phase diagram where we do not need to consider Fou-
rier components with n>3. At this level of approx1mat10n
there are no other mode lockings between different Founer
modes. “’

Explicitly writing out the summation up to n=3, we'find

F=Fy+Fy,, ¥
where
F0=a1(§q'§—q) +a2(§q/2'§—q/2)+a3(§q/3"§—q/3)
+bi(§q'§—q)2+b§(§q/2' §—q/2)2+bé(§q/3'§—q/3)q
+Ci2(§q'§—q)(‘§q/2' §—q/2)+ci3(§q'§—q)(§q/3' §lq/3)
+C£3(‘§q/2' §-—ql2)(§q/3' §-—q/3) 3

and

e A b e T Ak e e e
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mt—'b'{(s Sq)(S—q S_g)+b, (o Se)(S—gn: S_en)
+55(S g S o) (S g S_am)+ci(Sq-S_gn)
X(S—q'Sq/2)+C’1’3(Sq'S—q/3)(S—q'Sql3)

+ ¢y(S g S—a) S—qn-Sam) + 1Sy 84
X(§—q'§—q/2)+C'1"3(§q‘§q/3)(§—q'§—q/3)

C1333

+cgg('§q/2'§q/3)(§—q/2'§—q/3)+ [(S S_q/3)

X(g—q/s‘5—q/3)+(§—q'§q/é)(§q/3'§q/3)]- )

Since S‘k is the Fourier transform of a real function, §k*
=§_, and so we can immediately rewrite Eq. (4) as

Fia=b{1S ;- S,[2+ 5515 Sonl?+ 6518 s S gl

+clS g 8 gnl*+ C’fslgq‘§—q/3|2+cg3|§‘q/2'§—q/3|2
+ gl 8q- S gnl >+ 5S¢ Sonl+clSenSonl®
+c¢1333 Re{(g—q' §q/3)(§q/3' §q/3)}' )

III. ORDER PARAMETERS

The ferroclinic order parameter, as a real yalued XY spin,
has two independent variables. These can be taken as the
magmtude and direction of the vector. We define the x axis
of our coordinate system using the ferroclinic order param-

eter Sq,
§,=|3,lx=xx. ©)

The antiferroclinic order parameter is also a real XY spin and
50 it too must have two independent variables..Let the first
be the vector magnitude and the second be the coordinate
system relative to the ferroclinic order parameter,

§,n=13 allxcos($)+ sin(¢)]=Y[ cos($) +y sin(¢>g7.)

With the heliclinic order parameter, unlike with the ferro-
clinic or antiferroclinic order parameters, +g/3 is not the
same as — g/3. Thus, the heliclinic order parameter is a com-
plex XY spin with four free parameters. Parametrize this
order parameter as

- - - . Y &
Son=1Sqnllx cos(a)e'¥—iy sin(a)e'?]
=Ze""’[;cos(a)—i; sin(aje’ o 9], 8)
where Z, a, i, and o are the four independent variables.
Using the definitions (6)—(8), and substituting into Egs.
(3) and (5) we find
Fo=a;X2+a,¥Y?+a3Z+ b | X*+ by Y+ b3Z*+c1,X°Y?

+e} X224 e Y222 )

and
Fiyy=b"X*+bY*cos*(2 $) +byZ*[ 1 —sin*(2x)sin®
X (= o)1+ (clpt+ ciy)cos () X2Y2+ (c3+cTs)
X cos2( @) X2Z2+ (g + chp) Y2ZHcos* (¢ — a)
— sin(2 ¢)sin(2 ar)cos?[ (¢— 0)/2]} + ¢ 1333XZ° cos( @)
X[ cos?(a)cos(3 ¢) —sin®*(a)cos(20+ ¢)]. (10)

The above free energy contains a large number of free
parameters that must be found by minimization. This yields a
large system of simultaneous equations that must be solved
to produce a complete solution. In this paper we only con-
sider the special case where antiferroclinic behavior is not
present and consequently ¥ =0. Since there is nb mode lock-
ing between the antiferroclinic component and any other § 'k
for k=2 /3, this is the same as constraining @5, ¢1,, and ¢;
to be positive. These added constraints simplify the free en-
ergy considerably and we are left with

Fo=a;X*+a;Z2+ b X*+bsZ* +c.X22% (11
and
Fip= —b3Z* sin?(2a)cos’(¢y— o) +cy3 cos®(a)X*Z?
+ ¢ 1333XZ3 cos( a)[cos?(a)cos(3 )
— sin’ (a)cos(20'+ 1., (12)

where we have defined

. w
ci3=cy3tCis,

by=b;+b], (13)
by=b}+b}.
1

Note that while the free energy does not explicitly depend on
the sign of a, the parameter z; must have an implicit depen-
dence on a since a chiral system distinguishes between right-
handed and, left-handed modulations. We will return to this
point later on when we construct the real-space orientations
of the molecules.

Next we reparametrize o and ¢ by defining

Y=o— l/”
(14)
3=c+2¢

so that Eq. (12) becomes,
Fip= —b3Z* sin?(2a)cos®(y) +ci3 cos?(a) X222
+¢1333X 72 cos(@)[ cos(3 8)cos( y)cos(2a)
+sin(3.6)sin{y)]. (15)

Since & only appears in the final term of Eq. (15) we can
quickly find the value of & that minimizes the free energy

-
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oF

335 sin(3 &)cos(y)cos(2a) +cos(3 8)sin(y)=0.

(16)

IV. MODE LOCKING

All the terms in Eq. (15) except for the ¢33 term are
positive semidefinite functions of «. Thus, the sign of cos(a)
is completely determined by this one term and consequently

cos( @) XZ3 ¢ 1335[ cos(3 &) cos( y)cos(2 @) + sin(3 8)sin( y) ]
<0 (17)
if F is to have its minimal value. Let cos(a) be such that
—cos( a)c1333XZ§|cos(3 8)cos(y)cos(2a)
+ sin(3 8)sin( y)|>0. (18)

X and Z as the magnitude of vectors are intrinsically non-
negative. If we rewrite the absolute value as

|cos(3 8)cos( y)cos(2 a),+ sin(3 8)sin( y)|

= \[cos(3 8)cos(y)cos(2 a) + sin(3 &) sin( "3,
(19)

then after expanding and substituting Eq. (16) into Eq. (19)
to eliminate &, we find

|cos(3 8)cos(y)cos(2 &) + sin(3 8)sin( y)|

=41 —sin2(2a)gosz( V). 20)
This yields the free energy
F=Fy+F,,
Fo=a;X*+as3Z%+b X*+b,Z%+ ¢}, X222,

+

Fi=—b3Z* sin?(2a)cos?(y) + ¢ 13 cos?(a) X222

—¢1333XZ3 ¢os( @) V1 —sin®(2 a)cos?( y).

The noninteracting pottion of the free energy, F, behaves
much like a magnet in the mean-field approximation and for
arbitrary wave vector k has the form

Fi=ar(Se-S_ ) +bi(Sp-S_0)2+ 2, Crir(Se-S—p)
kl

X(gkl'g_kl).

For any given mode k, the summed c ;s terms act as a per-
turbation to the quadratic a; term. This shifts the transition
point in a nontrivial manner, but does not modify the under-
lying physics. The interaction term Fy, on the other hand, is
responsible for (among other things) the mode locking be-

tween the §q and §q,3 modes, which stabilizes specific Fou-
rier components. These restoring forces add phases to the
phase diagram that do not have any analog in the simple
magnetic systems modeled by F.

JONATHAN J. STOTT AND ROLFE G. PETSCHEK
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V. PHASE DIAGRAM AND CHARACTERIZATION

Since all the temperature dependence of the free energy
(21) is assumed to be contained in a; and a;, these two
parameters determine the phase of the system. First, consider
the parameter . Looking at the free energy (21), it is imme-
diately apparent that if b3<<0 then cos?(y)=0 always mini-
mizes the free energy. If, on the other hand, b'3' is positive, it
is useful to consider a reparametrized free energy. Let

{=cos(a),
2=cos?(y)sin?(2a),

and the free energy (21) becomes

F=Fo=b3Z* ¢+ c13X° 22— 15X Z° (N1 - & :
22)

First minimizing with respect to ¢, we find

_ C1333Z
ity

From the definition of ¢, if this results in |£|>1 then the
minimum must be |{|=1. Assume for the time being that the
equilibrium value of { is such that |£]<1 since if {=1 then
£=0 from our definition of £2 which implies that v is-un-
determined. Substituting back into the free energy,

2 2
€1333 €1333
F= Fo'_‘ Z4+ (

RN ATy
dcys dcqs b3)Z & @)

¥
By inspection, the equilibrium value of £ is

[ 13332/4C 137 bg> 0,

=0,
(24)

§2=°°, 013332/46']3_b’3’<0.

Since mathematically |{|=<1, however, & can never exceed §
unity. Looking back on the definitions 'of { and &, the proper }
interpretation of this result is that cos?(y) takes on only two 3
values: zero or unity. The equilibrium value of cos?(7) is the 3
one that results in the lower free energy (24).

First, consider the case when cos’(y)=0, whose phase
diagram is summarized in Fig. 2. Minimizing the free energy
(21) yields a system of equations:

oK

ax 0

=a;X+2b, X3+ XZ {3+ c 13 cos?(a)]

1
~ 51333 cos(a)Z?, (25
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I IV

FIG. 2. Phase diagram for b3<<0. Phase I'is the isotropic phase,

1 is the ferroclinic, 1T is the ferriclinic 0 <<cos(a)<1 phase, and IV

is the ferriclinic cos(a)=1 phase. Dotted lines are coordinate axis,

solid lines are continuous transitions, heavy dashed lines are dis-
* continuous transitions.

0F_
0z
=Z| a3+2b3Z%+ X[ c3+ ci3cosi(a)]
3
— 5 C1nXZ cos(a) |, (26)
F
%=0=X22[2c13X cos(a) —cq333Z]. (27)

Since X and Z are the magnitudes of vectors and hence must
be non-negative, for a;>0 and a;>0 the system is in an
isotropic phase with

X=Z=cos(a)=0. (28)

Since it has no tilt, this phase must be the Sm-A phase of the
liquid crystals. Exactly at the point a;=a3=0, the quadratic
terms in the free energy vanish and there is a critical point.

Next, consider the quadrant where a;<<0. Since a; is
negative, we expect that X will be nonzero. For large enough
values of a3, one always finds Z=0 and'as a consequence
cos(c) is unspecified. Equations (25) and (26), however, are
easily solved. Anticipating the case when Z#0, Wwe assign
cos(a)=0 and so

X*=—a,/2by, (29)
Z?%=0, (30)
cos(a)=0, @31

which are the results one would expect for a simple ferro-
magnet or, in our case, the ferroclinic phase. '

As a5 decreases, Z eventually becomes nonzero. Whether
this happens for a3 positive or negative is determined by the
sign of ¢, . Equations (25)—(27) are once again easily solved
and we now find

ascli—2ai[bs—(ci3334cy3)]
x2= 3C13 1Lb3 _ 1333 1,32’ (32)
4by[bs—(ci333 ldci3)]—cy3

aici.—2asb .
72— 113 . 30 - (33)
4b[b3—(c1a33dci3)]—cy3

COS( a) =c 13332/26' 13X. (34)

Note that cos(a) is proportional to Z, which justifies my pre-
vious statement that cos(e)=0 when Z=0. From Eq. (32),
the phase transition from Z?=0 to Z*>0 must occur when

!
13

ﬁl‘al (35)

as=

When cos(a)=1, the system undergoes a continuous tran-
sition to a new phase, since the value of cos(a) is unable to
increase further. Setting Eq. (32) equal to unity, this transi-
tion occurs when

4 r 2
2bicy333 T4ci3cT;
a= 2 ) ; 4a3. (36)
8b3c3—2¢130 333" T €13C 1333

In this phase, the equilibrium values of X and Z are given by
0=a,X+2b, X3+ (c}y+c13)XZ —c3nZ?2,  (37)
0=a3Z+2b3Z%+ (cjst c13) X2 Z— 3¢ 133X Z%/2. (38)

While of simple form, these equatlons are difficult to solve
for arbitrary coefficients and we will leave them as they are.

While it might appear that a stable phase with X=0, Z
#0 is possible, this is not-the case. When X =0, minimizing
the free energy in Eq. (25) requires that cos(a)=0. Physi-
cally, however, when X=0, the coordinate system is no
longer defined and so, by extension, S /3 must be rotationally

invariant. From the definition of S,; in Eq. (8) and setting
cos(a)=0, one finds that

> s
Sq/3= —lZy,

which is not rotationally invariant. Further, looking at the
stability of the free energy at that point we see that

*F 20X’z
—_ =2¢ ,
3 cos(a)? !

cos(a)=0

which is zero when X=0. This implies an inflection point in
the free energy which is incompatible with the requirement
from Eq. (25) that cos(a)=0 be a minimum when X=0.
Hence, we conclude that no additional phases can appear so
long as cos?(y) remains zero. Thus as a consequence of the

mode locking between S g3 and S we find that a ferroclinic
component is present even when all terms containing X2 in
the free energy are positive.

Minimizing the free energy when cos?(y)=1, on the other
hand, yields a system of coupled equations

i

L T e S
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III

v,

FIG. 3. Phase diagram for b33>0. Phase I is the isotropic phase,
II is the ferroclinic, III is the ferriclinic 0 <<cos(a)<1 phase, IV is
the ferriclinic cos(a)=1 phase, and V is the pure helix (X=0)
phase. Depending on the sign of A F, region IV may or may not be
present in a given system. Dotted lines are coordinate axis, solid
lines are continuous transitions, heavy dashed lines are discontinu-
ous transitions.

aF_O
X

=611X+ 2b1X3+XZZ[Ci3+C13 COS2((¥)]

1
— 5 C133308( a)Z%|cos(2)l, (39)

oF ~o
0z~
=a3Z+2b3Z3+XZZ[C{3+C13COSZ(O()]
3 2 "zl s 2
~ 3¢ cos(a)XZ?|cos(2 )| —2b5Z° sin*(2 ),
(40)
oF _
da
=8b3Z* cos(@)cos(2a) +2¢3X>Z% cos(a)
cos?(a)cos(2a)
- 3 -
c1333XZ ( cos(2a)| +4 lcos2a)] )"
(41)

These equations correspond to the phase diagram summa-
rized in Fig. 3. If Z=0, then these equations reduce to the
cos’(9)=0 case and we recover the solution for a Sm-A
phase in Eq. (28) and for a ferroclinic phase in Eq. (29).

It is known from basic thermodynamics that the system
undergoes, a phase transition when the free energy with
cos’(y)=1 is equal to the free energy with cos®(y)=0 be-,
cause the functional form of the free energy changes abruptly
at that point. Let

AFEF‘cosz('y)=l—“Flcos2('y)=0' (42)
The transition from cos?(3)=0 to cos’ (y)=1 occurs when
AF=0.
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FIG. 4. Phase III, cos?(y)=0 [X#0, Z#0, 0<cos(a)<1]. The
resulting tilt vector, ¢ . is plotted for #=1,2,3.

When Z#0, the system is in either the cos’(y)=0 phase
we looked at above Eq. (32) or it is in a new cos’(y)=1
phase, depending on the sign of AF in Eq. (42). In the
cos’(y)=1 phase, the full set of Eqs. (39)-(41) must be
solved to completely determine the phase diagram of the
system. A few solutions, however, can be obtained by in-
spection. First, if cos(@)=1, then the system (39), (40) be-
comes identical to (25), (26) and we conclude that in this
region cosz(y) is undetermined, which we could have in-
ferred from the definition of S,/ in Eqs. (8) and (14).

On the other hand, when X=0 it is immediately apparent
that

X=0,

Z=—a3/2(b3—b'3' , (43)

cos(a)=1/\2

is the solution.

Finally, if cos(@)=0 and a;>0 then the free energy once
again takes on the functional form of a magnet in a mean
field and we are left with

X=0,
Z= —a3/2b3,

cos(a)=0. (44)
However, since we know that b is positive [or else cos*(y)
would be identically zero], the solution given in Eq. {43)
always has a lower free energy than Eq. (44). Consequently,
Eq. (44) is unstable with respect to Eq. (43).

Numerical investigations (assigning order of magnitude
estimates to the various constant parameters) indicate that for
some range of parameters, there is also an intermediate X
#0, Z#0, 0<cos(a)<cos(m/4) phase with cos?(y)=1. The
analytic solution, however, is sufficiently difficult that we are
unable to investigate this phase any further.

Now that we have completed an outline of the phase dia-
gram both for cos?(y)=0 (Fig. 2) and for cos*(y)=1 (Fig. 3),
let us examine what this says about the molecular orientation
within the smectic layers. If cosz(y)=0, then from the defi-
nition (14) of y we find

o=yt+nm
and so from the definition of S o in Eq. (8)
- . s a . "
Sq,3=Ze””[x cos(a)—iye""sin{a)]

(45)

N - -3 .
=Ze"Y[x cos(+ a)—iysin(* a)],
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FIG. 5. Phase IV [X#0, Z+#0, cos(a)=1]. The resulting tilt
vector, 5:,, is plotted for #=1,2,3.

i
which, given the constraint on cos(e) in Eq. (18), minimizes
F when

Re{eV}=+1.

Physically, this means that the heliclinic order parameter S a3
is completely in phase (modulg, 24/3) with the ferroclinic

order parameter §q. The ambiguity in the.sign of a occurs
because cos(e) is an even function of @ and. we have not
specified how a3 depends on the sign of the chiral pitch. For
convenience, we assume for the rest of this ‘paper that a;
varies with the chirality such that +«a is the lower energy
solution.

To find the real-space tilt ‘Vector, just sum the Fourier
series

S’/=§k) (e~iMn§ V=[X+Z cosCa)cos(2w£13)1x

H
bas

+Z sin(a)sin(2w£/3) ; \ (46)

When |cos(a)|<1, both X and Z are nonzero and the system
is in the two order parameter phase as sketched in Fig. 4,
When cos(a)=1, the y component in Eq. (49) vanishes and
both cos?(y)=0 and cos?(y)=1 take on the same functional
form,

> A

it 1 :; v
S ;=[X+Z.cos(2m/13)]x. 47)

This form, with its planar three-layer unit cell and nonzero
spontaneous polarization (see Fig. 5), is quite similar to that
proposed by Takezoe et @f. [4] for the Sm-C,, phase.

In the cos’(y)=1 phase(s) on the other, hand, from the
definition of y we find

>

o=y+nw/2.

Substituting into Eq. (8) as we did to ‘get Eq (45) we now
find that

R X
§ 5= Ze'% cos( @) — iye" ™ sin( )] (48)
=Ze![x cos(* @) +y sin( % a)], (49)
v‘ {/v

‘ +2

FIG. 6. Phase III, cos’(y)=1 [X+#0,Z#0, 0<cos(a)<1]. The
resulting tilt vector, ¢ ¢, is plotted for Z=1,2,3.
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FIG. 7. Phase V [X=0, Z#0, sin?(2a)=1]. The resulting tilt
vector, ¢, is plotted for #=1,2,3.

|

with X, Z, and & given by the system of equations’in Egs.
(39)—(41). The net effect is to change the phase of the y

component of § g3 5O that instead of S, ; xsin(2w//3),

S ;=[X+Z cos(a)cos(2 71'//3)];+ Z sin( a)cos(2'rr//3);
, , (50)
as shown in Fig. 6.
When sin(2@)=1, the ferroclinic order parameter vanishes
(X=0)"and"we are left with a purely helical phase (Fig. 7)*

§,=2[cos(2m/ B+ P)x+sin(2wlB+¢)yl,  (51)

where i is an’ arbitrary phase. Since ¢ is now a gauge vari-
able this implies the existencé of a spontaneously broken
symmietry with its corresponding Goldstone mode, just as the
spontaneously broken symmetry of the Sm-C* gives rise to a
Goldstone mode in that phase.

VI. ANALYSIS

In this paper,-we focused on terms in the:free. energy up to

0(S5* 4nd only considered the Fourier modes S and Sq,3

We did this both to simplify the problem and because we
only expect these two Fourier modes to hive large' magni-
tudes. Consequently, they should be the easiest to' nieasure
experimentally. Despite this simplified description, we find a
two order parameter region, a mode locked phase, and two
single order parameter phases, as shown in Table I. These
phases are qualitatively similar’ to many of the phases ob-
served experimentally. In particular, Fig. 5 bears a strong
resemblance to the form of the Sm-C., proposed by Takezoe
et al. [4). This model is thus able to explain a much greater
range of phase behaviors than the phenomenological model
of Cepi¢ and Zeks [11]. Our results, however, still do not
provide a complete picture of the various Sm-C* subphases
due to the absence of the antiferroclinic order parameter. The
antiferroclinic phases are known to play an important rolé

TABLE 1. Summary of the different heliclinic phases and the
order parameter(s) associated with each.

Phase Description X Z “Polarization”
I Paraclinic (Sm-A*) 0 0 N/A

I Ferroclinic (Sm-C*) >0 0 linear

m Heliclinic—two order param. >0 >0 elliptical
v ﬁelielinic—mode locked , >0 >0 linear

v Heliclinic 0 >0 circular
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both in the phase diagram of materials such as MHPOBC.
Solving the model in the presence of all three order param-
eters, however, is beyond the scope of this paper.

To construct an even more complete theory, especially
one that includes modes whose wave vectors are not rational
fractions of the zone boundary wave vector, several addi-
tional effects must be considered.-First, it is natural to expect
that these phases (like every other smectic phase with in-
plane rotation order) should, in a chiral system, have a slow
twist of the axis associated -with their long-range orienta-
tional order. Mode locking occurs when the fotal wave vec-
tor (including the natural chlrahty) for specific terms in the
free energy sum to zero.

Second, it is.natura] to expect that S 43> 10 general, has a
somewhat lower susceptibility (i.e., a less negative value of
a;) than the neighboring values of the wave vector k. Thus,
we expect that this mode locked phase will appear only if the
energy decrease associated with the mode locking exceeds
that associated with the smaller value of a. A detailed treat-
ment of this is complicated and involves several additional
parameters. Roughly speaking, however, the energy associ-
ated with a phase with & close to g/3 is —a k/4b3 That of the
mode locked phase is approximately —a3/4b3 fin Where f,
is the value of the mode lpcking ¢;333 term for the phases
being considered. Thus mode locking is expected when

(a,1a3)*<4bsfy.

Here a,, is the most negative value of a, for all k.

Next, it is also possible for there to be mode locked
phases in which several modes, each with different values of
ks happen to add up to g=2mn. We believe that these are
implausible {(except for the slight helical complications dis-
cussed above), at least provided that the curvature of a; near
k=gq/3 is positive.

Finally, Fourier modes with k’s smaller than 27/3 will
also experience imode locking-once the higher order modes
are included in the free energy. For example, |.§ e S q/4|2 and
(Sa6°S (S s+ S—gp) aré valid terms that also support
mode locking (the first 'one is allowed as an Umklapp pro-
cess). The gauge freedom we saw in the pure twist phase
(51) represents the relative phase difference between that
particular mode and some arbitrary reference.coordinate sys-

tem (in our case, the S mode). Since this gauge freedom is
present in every Fourler component but does not change the
noninteracting free energy Fj, we can always assign to it a
value such that mode locking lowers the energy of the sys-
tem. Thus, the mode locking terms in the free energy then
will.combine to form an infinite sequence of lockins betwegn

modes Sq,m and Sq,,, for every rational number m/n. There-
fore wé ‘expect that, on expanding the free energy to all or-
ders, mode locking will turn the continuous model for the
ferriclinic phase&ofCeplc and Zeks [11] into a Devil’s stair-
case, much like the model proposed by Takanishi et al. [7].
Our Devil’s staircase, however, assumes the existence of
short period helical modulations about the layer normal,
which we believe better captures the physics of the ferriclinic
phases.

PRE 60

We have recently become acquainted with a preprint by

Mach et al. [6] of an experimental study they have per-
formed .on 100TBBB1M?7, a liquid crystal compound with
two distinct ferriclinic phases (Sm-Cr;; and Sm-Cpp) in
addition to Sm-C,, ferroclinic, and antiferroclinic phases.
By examining the x-ray scattering off of free-standing films,
they have measured the superlattice associated with these
different phases. They observe a four-layer superlattice in the
Sm-Cpj, phase, a three-layer superlattice in the Sm-Cpyy
phase, and ‘a spacing incommensurate with the underlying
lattice in the Sm-C, phase. This measurement is consistent
with this model once the higher order modes (especially g/4)
are included, although the interpretation of the Sm-C, phase
in the context of this model is uncertain. Their measurement
may also distinguish between this model and the model. of
Cepi¢ and Zeks [11]. Where their model predicts one‘con-
tinuous trdnsition, ours predicts a series of discrete jumps. In
experiments, the system is seen to make discrete jumps in the
period of the belical pitch, which suggests our model may be
more appropriate for these phases.

L

VIIL. CONCLUSIONS

Thus, we have shown that by starting with a simple de-
scription of a chiral smectic system we can derive a mean-
ingful"free energy and model a wide variety of ferroclinic,
antiferroclinic, and ferriclinic phases. While similar in ap-
proach to several existing models for these phases, we in-
clude in our free energy fourth order terms that do not appear
in the models considered previously [11,12]. These
symimétry-allowed tefins encourage mode locking between
giffer”eni' Fourier modes. This mode locking, in turn, causes
significant qualitative chang@s in the resulting phase dia-
grany, '

Even under the radical assumption that only the ferro-
clinic and ‘‘twist’’ order parameters can be nonzero, our
model predicts a number of interesting phases. We find a
phase with no tilt which, by construction, we identify with
the smectlc—A phase. We also find a phase with only ferro-
clinic-order which we naturally identify as the sthectic-C*
phase. In addition, we find a number-of ferrielectric phases.
One (see Fig. 5) bears a strong resemblance to the smectic-

C, phase. Another, which consists of a helical modulation
with a period of three times the layer spacing (see Fig. 7),
may have been experimentally observed by Mach ef al. [6].
The other phases (Figs. 4-6), while clearly ferroclinic
phases, seem not to correspond to any phases yet observed.
Much like the model of Lorman et al. [12], our model also
predicts a single Goldstone mode should be present in all the
ordéred phases. Additional phases [including an antiferro-
clinic phase (smectic-C*) and antiferroclinic two-phase re-
gions] can be found by including additional order param-
eters, but only at the expense of increasing analytical
difficulty.
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