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reduction. Again, this is consistent with our measurements.

IV. EXPERIMENTAL RESULTS

It is clear that in measuring the period of small oscillations
of a set of partial rings, the significant sources of systematic
error are (1) any radial offset of the pivot point from the
center of the rings and (2) the effect of supporting the rings
on a round peg rather than a knife edge. Both errors increase
in significance as the half-angle of the rings is reduced. Our
smallest half-angle was 7/4. Thus it is useful to examine the
effects of these two sources of error for this smallest ring.
Table I summarizes our results. The first column of the table
lists the radial offset of the support point of the ring, the
second column lists the radius of the support peg, and the
third column lists the radius of the support hole. The fourth
column gives the theoretical period for the ring including
corrections for radial offset and support peg. Finally, the last
column lists the measured period of the ring.

In terms of ring configuration, the first row in Table I
represents a modified ring with the support hole filled in and
a notch cut in the ring from below, halfway through the ring.
The ring was then supported on a knife edge. Accordingly, it
represents a ring with zero radial offset and a support peg
with zero radius. The agreement between the theoretical and
measured results is excellent. The second row in Table I
shows the effect of moving the support point radially by 0.27
cm. However, the support is still a knife edge. As can be
seen, this radial offset introduces an approximate 4.4% re-
duction in the period. The third and fourth rows in Table I
show the effect of introducing a round support peg of in-
creasing radius. The larger peg of radius 0.122 cm in a hole
of radius 0.25 cm introduces an additional reduction in pe-
riod of about 3%.

Finally, the last row in Table I shows the effect of filling in
the support notch and mounting the ring on a knife edge
along the inner radius of the ring. This amounts to a radial
offset of —0.50 cm. In this case, the agreement between the
theoretical and measurement periods was exact (no doubt by
chance). In general, the agreement in the table between the
theoretical values for the period and the measured values is
quite good, although at the largest peg size there is a 2%
discrepancy.

V. CONCLUSIONS

It is clear that a set of carefully constructed partial rings
can make an excellent experiment for a physics laboratory. If
the desire is to produce a set of rings that have observed
periods independent of half-angle, then care must be taken to
insure that (1) the rings all have the same radius, (2) the
support point is accurately placed at the center of each ring
(the point where the bisector and the mean radius of the ring
intersect), and (3) the ring is supported on a knife edge rather
than a round peg. To the extent that it is desired to introduce
systematic errors into the experiment, one or more of these
constraints may be intentionally relaxed.

!Cenco Operating Instructions (Central Scientific Company, Chicago,
1969), No. 071942-063 Cenco—Miller truncated-ring-pendulum paradox
demonstrator.
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In the framework of quantum theory, we present one theorem and three corollaries regarding the
direct connection between constants of motion of a physical system and degeneracies of its energy
eigenvalues. It is shown that this connection emerges when there exist quantum operators which
commute with the Hamiltonian, but not with each other. Further it is shown that if the commutator
of these operators is a nonvanishing constant number then (a) all the eigenvalues of the system are
degenerate, and (b) the degree of degeneracy is infinite. A number of examples are discussed
including the parity degeneracy of the hydrogen atom and the infinite degeneracy of the Landau
levels of a charged particle in a constant magnetic field. © 1995 American Association of Physics
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L. INTRODUCTION

The hallmark of any physical theory dealing with the time
development of a system is the identification of the system’s
constants of motion. In the quantum regime, these are con-
served quantities, e.g., expectation values of Hermitian
operators O which commute with the Hamiltonian of the
system, H. In other words, for the quantal constants of mo-
tion,

d/dt{0)=i/k([H,0])=0. 1)

It is also readily shown’ that the commutativity of H with
an operator O leads to the invariance of H under a group of
transformations generated by O. This intimate relation be-
tween the invariances of the system under groups of trans-
formations, and corresponding constants of the motion (con-
served variables) is, of course, very well understood.

A related aspect of the vamshmg of commutators, say,
[H,0,]=0, [A,0,]=0, [01 ,0,]=0, etc., is the existence of
common eigenstates of H, 01, 02, Thls establishes the
presence of a complete set of observables, corresponding to
eigenvalues of the commuting operators, which specify the
nature of the stationary states of the system. All these prop-
erties are thoroughly discussed in standard texts of quantum
mechanics.

In this work, we discuss an additional relation involving
constants of the motion on one hand, and the appearance of
degeneracies in the eigenvalues of many observables, on the
other. We trace these degeneracies to the commutator algebra
of the operators corresponding to the constants of motion of
the physical system.

In Sec. II of this paper, we discuss and prove general
theorems which have a bearing on this problem. In Sec. III,
we present applications to two systems of physical interest.
We summarize our conclusions in Sec. IV.

I1. DEGENERACY OF EIGENSTATES AND
CONSTANTS OF MOTION

We discuss and prove here one theorem and three corol-
laries. .

Theorem: Consider the Hamiltonian of a system, H, hav-
ing a set of eigenfunctions |¥,) such that

H|V,)=E,|¥,). (2)

Assume also the existence of a pair of Hermitian operators
0O, and O, corresponding to constants of the motion of the
system, that is,

[ﬁ7é 1] = 0’

[f{5 62] = 07 (3)
which do not commute with each other

[0,,0,]=C#0. @)

Equation (4) signifies an “incompatibility” between the two
constants of motion corresponding to operators O and O,.
Under those conditions, some of the eigenvalues of H are
necessarily degenerate.

Proof: Suppose that one of the eigenstates of H, with en-
ergy eigenvalue E, , is not degenerate. Then, operating with
0O, on Eq. (2), we obtain

é11’\1|\I,n>=I:\Iéllq}‘n>zEnéll‘I,n)’ (5)
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where the commutativity of H and 01 has been used. We see
that both |¥,) and 01|‘I’,,) are eigenstates of H with the
same eigenvalue E,; in order that eigenvalues E, be not
degenerate, according to our assumptlon the state Oll‘lf,,)
must be proportional to [¥,), i.e.,

04]¥,)=ay|¥,), (6)

where «; is a multiplicative constant. Similar arguments for
the operator O, lead to

OZI\Pn>= a2|\I’n>7 (7)

where a, is another multiplicative constant. Hence, Eqgs. (6)
and (7) lead to

é|‘1’n>=(alaz—azal|‘l’n>
=0 for E, nondegenerate. (8)

If we now assume that all |¥,) correspond to nondegenerate
eigenvalues, then we may use the completeness of the spec-
trum to expand an arbitrary nonvanishing state |¥), viz.

)=

Operating with the commutator C, we find

cnWa). )

Clwy=2 ¢,Cl¥,)=0, (10)

where we have used Eq. (8). The implication of Eq. (10) is
that C=0, in contradiction to the original assumption, Eq.
(4). We conclude that, as a result of Egs. (3) and (4), at least
a part of the spectrum of H must be degenerate. This com-
pletes the proof of the theorem.

Corollary 1: If the commutator C in Eq. (4), is a constant
number c, then the entire spectrum of H is degenerate. This
is so, because Eq. (8) for eigenstates corresponding to non-
degenerate eigenvalues cannot be satisfied for a nonvanish-
ing constant number c.

Corollary 2: If, as above, the commutator C is a constant
number c, the spectrum of eigenstates of H has an infinite
degree of degeneracy. For, in evaluating the trace of the ma-
trix elements of the product 0,0, in the subspace of degen-
erate states |¥, ), i=1,...,G, with G being the degree of
degeneracy, /

G

Tr(6102)=21 (‘I’n,i|éléz|‘1’n,i>’ (11)

the completeness of the set [¥, ;) allows us to write

= 2 (V,]0,|¥, N¥,0,]¥,) 12

which is the trace of a product of two matrices. For
G =finite, this trace is independent of the order of the matri-
ces, which leads to

G

G
21 (‘I’n,ilél‘l’n,»:O:C; <\Pn,i|\pn,i>‘ (13)

This can only be true if C=c=0, in contradiction to the
original assumption, Eq. (4). Hence we conclude that G =,
i.e., the degree of degeneracy is infinite.

Corollary 3: If O, and O, anticommute, then one or the
other of the two operators annihilates each eigenstate corre-
sponding to a nondegenerate eigenvalue. This follows from

S. Fallieros and E. Hadjimichael 1018



the fact that, in this case, =2 éIOZ, in conjunction with
Eq. (8) which is valid when E, is nondegenerate.

We illustrate these ideas by three simple examples here,
and in the following section we discuss two less well-known,
but quite important, applications. A very familiar example is
the degeneracy of angular momentum states associated with
the central force problem. Recall that for a spherically sym-
metric potential the Hamiltonian H commutes with the an-
gular momentum operator L, signifying the conservation of
this latter. Hence, [A,L%]=0, [H,L,]=0, and [A,L.]=0,
where Lt =L s iL, are the raising and lowering operators,
respectively. On the other hand, [L z’Li]= +#AL . . Hence
the conditions in Egs. (3) and (4) are satisfied for the opera-
tors H L+, L The consequences are well known: both
|E;! m} and L+|E I,m) are eigenfunctions of # with a dif-
ferent eigenvalue m of L 2 1 but corresponding to the same
exgenvalues of energy and L2 E, and I, respectively; this
then is the origin of the well- known degeneracy of energy
and angular momentum eigenvalues in this example.

Further, by Corollary 3, L, annihilates every nondegener-
ate eigenstate of H. The only one of this type is, of course,
the s state.

Further simple examples are the isotropic, two-
dimensional harmonic oscillator and the free particle. For the
former, the Hamiltonian is H=H,+H,, with

A=ﬁ,2/2”l'1'”1(()2;:2/2 £i=12=£’9' (14)

The conditions of Egs. (3) and (4) are satisfied by operators
H H 1 (or H,) and the z component of the angular momen-
tum L,=%p,—yp,; that is, H commutes with H, (or H))
and L, but’ [H1,L,]#0, leading to well-known degenera-
cies.

In the case of a free particle in one d1mens1on Egs. (3) and
4) are satisfied by the Hamiltonian A= =p 2/2m, the momen-
tum p=—if d/dx and parity P, both constants of the mo-
tion. In this case, the well-known solutions of opposite par-
ity, coskx and sinkx, correspond to the same energy,
#°k?/2m, which is thus degenerate.

ITI. APPLICATIONS

We continue with two important applications of the theo-
rem and its corollaries discussed in the previous section.

A. An electron in a hydrogenlike atom
Consider the nonrelativistic Hamiltonian
H=p*2m—«/r
=L%/2mr*—(#%/2mr*)3/dr r* 8/dr—«/r (15)

with xk=Ze?, for an electron in the Coulomb potential in a
hydrogenlike atom. In addition to the conservation of the
orbital angular momentum L and parity P, the direction of
the major axis of classical elliptical orbits is also constant in
time. The quantity of interest in this case is the Runge—Lenz
vector. The classical form of this vector is defined by

e=pXL/km—r/r (16)
and the quantum version is
e=(Lxp—pxL)/2km—r/r. 17)

In the classical regime the following properties of the
Runge-Lenz vector are noteworthy: as seen from Eq. (16)
and the fact that L is constant,
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(a) de/dt=0, ie., € is a constant of the motion.

(b) €L=0, and in view of r-L=0, € and r, and therefore
the partlcle orbit, are confined to a plane perpendicular
to L.

(c) In terms of the angle ¢ between the position vector r
and the Runge-Lenz vector € defined by r-e
=recos ¢, and by means of Eq. (16), we find

r=(L%km)/(1+€ cos ¢). (18)

This is the equation of a conic-section orbit, with ¢, the
magnitude of the Runge-Lenz vector, being the eccentricity
of the orbit. These features are also present in the case of
planetary orbits.’

Turmng to the quantum regime, it is straightforward to
show that ¢ commutes with the Hamiltonian H, [H €]=0, so
that its expectation value is a constant of the motion. In
addition, parity P is conserved since obviously [H,P]=0.
However,

[P,e]l=C=—2me+0. (19)

where =1 are the eigenvalues of the parity operator.
Hence, the Hamiltonian H, the parity P, and the Runge-
Lenz operator € satisfy the conditions in Sec. II, Egs. (3) and
(4). We expect therefore, that there will be degeneracies in
the spectrum of energy eigenstates. Indeed, operating on

H|E,w)=E|E, =) (20)
with €, and using the commutation relations, we find
eH|E, n)=HEE,m)=E€E,n). (21)

Hence both |E,m) and €lE,n) are eigenfunctions of H with
the same elgenvalue E. The hydrogenic atom has thus a par-
ity degeneracy, since PE,m)=mn|E,w), and PeE,n)=
~ m€E, ), € being a polar vector. This establishes the con-
nection between the constancy of (¢) and degeneracies in
hydrogenic atoms.

Two significant consequences of this degeneracy are as
follows.

(a) The appearance of hybrid electron orbitals, i.e., linear
combinations of states of the same energy but opposite
parity, which has a bearing on the chemical properties
of atoms.

(b) Alinear Stark effect, rather than a quadratic one,* in all
states of a hydrogen atom in an external electric field,
except the ground state, ¥,_; ;—¢, which is the only
nondegenerate one.

It should be noted in passing that by virtue of the fact that
€ anticommutes with P, and by Corollary 3 in Sec. II, we
obtain the result €¥; y=0, i.e., the Runge—Lenz operator an-
nihilates the ground state. ThlS can be easily venﬁed by a
direct calculation.

Finally, relativistic-order effects, such as a spin—orbit
force, would upset the conditions in the main theorem in Sec.
II, and could remove the degeneracies, at least partially, and
invalidate the constancy of the direction of the major axis of
the orbit. As is well known however, these relativistic effects
are small and, hence, the deviations from the results estab-
lished earlier are not significant.
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B. Landau levels for a charged particle in a constant
magnetic field B

We consider a particle of mass m and charge g in a con-

stant and uniform magnetic field in the z direction, B=Be, .
Classically, the Hamiltonian for the system is

H=11?/2m, —(gq/c)A, (22)

where A is the vector potential, i.e., B=VXA, and p and IT
are the canonical and kinetic momenta, respectively. The par-
ticle experiences no force along the z axis.

The quantal Hamiltonian on the x-y plane,
H L =12+11 y)/ 2m, is known to describe quantized motion,
i.e., it has discrete eigenvalues E,,,

E,=fw/(n+3), n=0,1,2,..

with w,=gB/mc, the cyclotron frequency. These are the cel-
ebrated Landau levels whose derivation is described in stan-
dard texts,” and will not be reviewed here. Our concem is to
investigate the degeneracies in this spectrum, and their rela-
tion to constants of the motion, on the basis of the general
theorem and corollaries described in Sec. II.

Returning momentarily to the classical regime, and using
the fact that the magnetic field B is constant, we may write
the Lorenz force

dll/dt=(q/c)vxB (23)
in the form
d/dt[II-(q/c)rxB]=0 (24)

which shows that
[II-(g/c)rxB]=a constant of the motion.
With B along the z axis,

(gB/c)y—II,=(gB/c)y—(c/qB)I1,]=constant,

(25a)
(gB/c)x+11,=(qB/c)[x+(c/qB)I1,]=constant.

(25b)

We use the above constants to define the components of a
constant vector R perpendicular to B, by

R,=x+(c/qB)Il, R,=y—(c/qB)Il, (26)
so that
(x=R,)*+(y—R,)*=(c/qB)*(TI2+113)
=(c/qB)*I1?
=(2mc?/q*B*)H. 27

Hence the vector R, a constant of the motion on the x—y
plane, defines the center of a circle on this plane.

Now, making the transition to quantum theory and defin-
ing operators R, and R, in terms of operators ,y,IL, 11, it
is straightforward to show that

S

(1L, ,II,]=i#(q/c)B (28)
and
[A.R,]=0, [HAR,]=0,

5 Bh 1_ s _ 29
[R,,R,]= —ific/qB=constant number.
Hence, not only are the requirements of Eqs. (3) and (4)
satisfied by H, R, , and R but also the commutator of R
and Ry correspondmg to two constants of the motion is a
constant number. The consequence of this is that the entire
spectrum of eigenvalues of the Hamiltonian is degenerate,
and the degree of degeneracy for each eigenvalue is infinite.
This is the explanation for the infinite degeneracy of the
Landau levels which, as is well known, has 1mportant con-
sequences for the behavior of conduction electrons in the
presence of an external magnetic field.

Finally, we may note the classical analog of these degen-
eracies. As noted earlier, the values of the constants R, and
R, define the position of the center of the classical circle
described by the charged particle, but the energy of the par-
ticle is independent of the specific location of this center.®

IV. CONCLUSION

By invoking a general theorem, and corollaries, regarding
the commutator algebra of the Hamiltonian operator of quan-
tal systems and operators corresponding to their constants of
motion, as discussed in Sec. II, we are able to anticipate
important properties of the systems without detailed solu-
tions of their equations of motion. We have demonstrated the
effectiveness of this method in the case of two important
systems, i.e., hydrogenlike atoms and the Landau levels of
charged particles in constant magnetic fields.
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the way it is.

ASKING AGAIN AND AGAIN

Whether or not the final laws of nature are discovered in our lifetime, it is a great thing for us
to carry on the tradition of holding nature up to examination, of asking again and again why it is

Steven Weinberg, Dreams of a Final Theory (Pantheon Books, New York, 1992), p. 275.
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