
International Journal of Computer and Systems International Journal of Computer and Systems

Engineering Engineering

Volume 1 Issue 1 Article 4

July 2020

Declarative Immutability in Java Declarative Immutability in Java

John Crowley
Boston College, University of Pennsylvania, j.crowley@computer.org

Follow this and additional works at: https://digitalcommons.fairfield.edu/ijcase

Recommended Citation Recommended Citation
Crowley, John (2020) "Declarative Immutability in Java," International Journal of Computer and Systems
Engineering: Vol. 1 : Iss. 1 , Article 4.
Available at: https://digitalcommons.fairfield.edu/ijcase/vol1/iss1/4

This item has been accepted for inclusion in DigitalCommons@Fairfield by an authorized administrator of
DigitalCommons@Fairfield. It is brought to you by DigitalCommons@Fairfield with permission from the rights-
holder(s) and is protected by copyright and/or related rights. You are free to use this item in any way that is You are free to use this item in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses, you need to obtain permitted by the copyright and related rights legislation that applies to your use. For other uses, you need to obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/or on the work itself.in the record and/or on the work itself. For more information, please contact digitalcommons@fairfield.edu.

http://www.fairfield.edu/
http://www.fairfield.edu/
https://digitalcommons.fairfield.edu/ijcase
https://digitalcommons.fairfield.edu/ijcase
https://digitalcommons.fairfield.edu/ijcase/vol1
https://digitalcommons.fairfield.edu/ijcase/vol1/iss1
https://digitalcommons.fairfield.edu/ijcase/vol1/iss1/4
https://digitalcommons.fairfield.edu/ijcase?utm_source=digitalcommons.fairfield.edu%2Fijcase%2Fvol1%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fairfield.edu/ijcase/vol1/iss1/4?utm_source=digitalcommons.fairfield.edu%2Fijcase%2Fvol1%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@fairfield.edu

Declarative Immutability in Java

27 International Journal of Computer and Systems Engineering Volume 1 Issue 1,

 2020

Declarative Immutability in Java

by John D. Crowley

ABSTRACT A pervasive mechanism is proposed to declare that variables and object instances are mutable
or immutable, and whether methods mutate instances. These declarations are integral to the type structure
of the language and allow the developer to declare, and the reader (and compiler) to determine, if a variable
or instance is immutable (even if other instances of the Class are mutable) or that an instance is immutable
throughout the application (a Pure instance). The concept of the owner or outsiders of variables and
instances is combined with a series of tags to declare mutability, and can be enforced during compilation.
This provides a more informative definition of the interface for a Class, requires fewer lines of code for
implementation, and reduces the runtime overhead of defensive coding (creating clones). In a multi-
threaded application, flagging a Pure instance to the JVM can provide significant performance
improvements by eliminating unnecessary synchronizations. Many of the benefits recognized for Functional
Programming are introduced to Java as an optional enhancement.

INDEX TERMS functional programming, immutable, Java, read-only, software development

Online at https://digitalcommons.fairfield.edu/ijcase/ Published by Fairfield University, DigitalCommons@Fairfield © 2020

Vol. 1, No. 1, 2020

about:blank

28 International Journal of Computer and Systems Engineering Volume 1 Issue 1,

 2020

I. INTRODUCTION

The goal of this research is to make the declaration of mutability an integral part of the type structure of the language.
This allows the developer to declare, and the reader (and compiler) to determine, if a variable or object instance is
mutable or immutable within a specific context, or is immutable throughout the application. It also allows the
declaration of methods which are read-only and do not mutate the defining instance (or other objects).

The advantages of immutability long recognized by Functional Programming environments [1] are introduced to Java.
This supports faster development of new Classes, makes Classes more robust, provides valuable information to the
user or maintainer of the Class, and is more efficient at runtime (especially in high volume, multi-threaded applications).

This discussion proposes extensions to the syntax and semantics of Java to:

• Define outsiders and owners of variables and instance references,

• Define tags to specify whether variables or the target instances of references are mutable or
immutable, and by outsiders or the owner.

• Define tags to declare that methods and their parameters are immutable.

• Extend the tags to types, generics, and the return values of methods.

The syntax of tags minimizes the textual expansion of the language, are simple to specify by the developer, and allow
the reader to quickly determine if a particular variable or instance is mutable or immutable. The defaults are chosen so
that all are optional – an existing Java program will compile and run with no changes, and match existing semantics.

This mechanism can be checked and enforced at compile time, with the exception of runtime support for self-
referential immutable objects. Most importantly, this allows instances which are normally mutable to be used
immutably within a specific context – without requiring the implementation of separate Classes (for example the
separate immutable and mutable Collections in Scala), or wrappers such as java.util.Collections.unmodifiable…

There have been several previous attempts to control mutability within a language. The const keyword has been
supported in C++ for many years [2], and ConstJava implemented these semantics in Java [3]. [7] described a major
implementation in C# which influenced the Pure at Runtime treatment here. Of course, most Functional Programming
languages use immutability as a core concept.

Although this discussion utilizes Java as a base, it may be possible to apply the same concepts to other object-oriented
languages such as C#, Scala, Swift, or C++, within the syntactic and semantic context of those languages. (C# [12], Scala
[6], and Swift might be better targets since the property concept is already supported. See Synchronization Tags.)

A modified Java compiler has been implemented as a proof of concept for some key features.

II. MOTIVATION AND EXAMPLE

A. Variables
Mechanisms already exist to protect variables – they can be declared private and accessed through getter/setter
methods. A variable may also be declared final and prevent any modification. However, there are still unknowns for
the reader or user of a Class (unless final):

• Is there a setter method at all? The current state-of-the-art is a convention that a method named
setVariable will modify variable. If a developer does not follow this convention, then a user of the
Class may well conclude that variable is not modified.

• Is variable modified indirectly? Even if a setter method exists, it is still not clear if other methods
also modify the value.

These questions can be answered only by good JavaDocs or reading the code, and are not verified by the compiler.

B. References
At least the private/getter/setter approach provides a mechanism to control the modification of variables. References
to object instances represent a more serious problem.

Once anyone obtains a reference to an instance, they can modify any (non final) visible variable or call any method
defined by the object – including any method which mutates the instance. Even if a developer defines all mutating

29 International Journal of Computer and Systems Engineering Volume 1 Issue 1,

 2020

methods in an inherited Class, and returns references only to a base read-only form of the instance, anyone is free to
(cast) the reference to the mutable form

The only safe mechanism is creating a (deep) clone of the original object and returning a reference to that clone. This
is cumbersome at a minimum, and if large graphs of interconnected instances are involved can become prohibitively
expensive at runtime

C. Example Class
As an example assume a somewhat contrived (and incomplete) message-passing application consisting of a Message
Class, a static sendMessage method, and variables to maintain state. See below. This is a very simple Class but is unsafe
in all but the most trusted environments.

Note that Date is used as a simple, well known (though deprecated) example of a mutable, unsynchronized Class.

D. Message Class Issues
The basic problem is that all of the variables are public. The final keyword allows us to specify that the variable itself
cannot be changed – but referenced object instances are open to modification, either accidental or deliberate.

For example, the constant showing how many messages will be retained in the sent list is safe only because it is final
and set to a primitive value (which is immutable):

public class Message implements Cloneable{

 /**/

 /* Message instance variables and methods */

 /**/

 public final Date createdAt = new Date();

 public final Date sentAt = new Date(0);

 public final Date ackedAt = new Date(0);

 public final char[] theMessage;

 public Message(char[] msg) { theMessage = msg; }

 public boolean hasBeenSent() { return sentAt.getTime() > 0; }

 public boolean hasBeenAcknowledged(){ return ackedAt.getTime() > 0; }

 public void markSent(Date sent) { sentAt.setTime(sent.getTime()); }

 public void markAck(Date acked) { ackedAt.setTime(acked.getTime());}

 /**/

 /* Static variables and methods to send messages and*/

 /* retain history about the last N messages sent. */

 /**/

 public static final int maxSentMessages = 24;

 /** When the Message application started */

 public static final Date systemStart = new Date();

 /** The timestamp of the last message sent */

 public static final Date lastSent = new Date(0);

 /** The most recently sent messages, up to maxSentMessages */

 public static final List<Message> sent = new ArrayList<>();

 /** Messages waiting to be sent */

 public static final List<Message> pending = new ArrayList<>();

 public static void sendMessage(Message msg){

 // logic to send the message

 }

}

30 International Journal of Computer and Systems Engineering Volume 1 Issue 1,

 2020

public static final int maxSentMessages = 24;

However, the timestamp when the last message was sent is specified as:

public static final Date lastSent = new Date(0);

which says that lastSent will always reference the same Date instance, but anyone, inside or outside of the Class, can
change the time: Message.lastSent.setTime(1234)

In order to prevent this, the developer of the Message system must code defensively, hide the object, and return
only a copy of the instance to any inquiry:

private static final Date lastSent = new Date(0);

public static Date getLastSent() {

 return (Date)lastSent.clone();

}

which is safe but has several drawbacks: a) requires more code, b) increases the complexity of the logic, c) allocates

a new instance every time invoked, and d) requires documentation about the meaning of the value returned. In

particular, the caller must realize that the Date returned is a copy and will not be updated if another Message is sent.

If it were desired to provide the sent or pending lists to a caller, this would be exacerbated. New ArrayList instances
would be created, a deep-clone copy of each Message copied over, and then the ArrayList returned to the caller.

Finally, the Message constructor should make a copy of the passed array. [String would be a more natural type for
this parameter, but char[] is used for the purpose of some of the examples.]

Code complexity and overhead have increased significantly, and also note the problem with the sentAt and ackedAt
variables. Since cloned copies of the Date instances are returned to the caller in the cloned Message, when it is sent or
acknowledged this will not be reflected in the returned copy – so the caller must re-query and get a new list to see if
any Message has been updated since the previous query. (Ignoring that some Message may also have been dropped
from the list.)

Overall, a safe implementation of this trivial Message subsystem will roughly double the required lines of code and
impose a significant runtime overhead.

Users of Message will have a steeper learning curve to understand all of the getter/setter methods, and the semantics
of returned objects. Several maintenance programmers in the future must read and understand twice the lines of code
in order to safely modify the logic.

None of this adds any value to the application.

III PROPOSED SOLUTION

We need a mechanism to specify and control when variables and object instances can be modified, or more importantly
can be known to be immutable. This mechanism must be easy for the developer to write, for future users and
maintainers to comprehend, and be enforced primarily at compile time.

A series of simple tags is proposed which can be declared with variables or types and control modification of the
variable or the referenced object instance.

E. Ownership
A simple view of the owner of a variable or object instance is defined:

• A variable is owned by the context in which it is declared. The same as if declared private in a Class
[JLS sec 6.6.1], or the innermost enclosing context in any other situation (i.e. a method or syntactic
block).

• An object instance is (initially) owned by the context in which it is instantiated. There are a few
situations whereby ownership may be transferred.

31 International Journal of Computer and Systems Engineering Volume 1 Issue 1,

 2020

Every other context is considered to be an outsider in the following discussion. (There have been other proposals

for the definition and handling of ownership – see [10])

F. Tags – R (Read-only) or W (Writable)
These specify whether something is mutable or immutable, and also distinguish between who may modify it – the
owner or outsiders. [Or I (immutable) and M (Mutable) but R and W appear to be obvious to all developers.]

This will be indicated by one or more character tags, which may be appended to:

• Variable definitions

• The types of instance references

• Generics

• Method definitions

• Method parameters

• Method return types

• Constructors

• Classes

In general, these positions are defined as (with some exceptions discussed below):

• Tag 1 – R = may not be changed by an outsider, W = may be changed by an outsider.

• Tag 2 – R = may not be changed by the owner, W = may be changed by the owner.

These are shown in upper case in this document so that they stand out clearly, and upper case (at least for W) is
recommended in source code for the same reason, but the formal syntax is case-insensitive. A colon is used as a
separator before these tags.

The default case is always writable (W), so existing (untagged) source code will compile and have the same execution
semantics as current Java.

Additional tags are introduced below, and some tags may be inferred during compilation.

1) Variable Definitions
For a variable, a 2-character tag is appended to the variable name.

Taking this original statement as an example (simplified by dropping final and static):

public Date lastSent = new Date();

and using the new positional declarations, then we could have the following possibilities:

public Date lastSent:WW = new Date();

Anyone can do anything to this variable (and the target Date instance). The same as the current semantics for public
(or the default of having no tags specified).

public Date lastSent:RW = new Date();

Outsiders cannot assign to lastSent but anyone can change the value of the target Date, and the owner Class may assign
a new instance (or null) to lastSent.

public Date lastSent:WR = new Date();

Outsiders may assign a new value to lastSent, but the owner may not. Anyone can change the value of the Date.
[Admittedly, a somewhat strange semantics for a variable.]

32 International Journal of Computer and Systems Engineering Volume 1 Issue 1,

 2020

public Date lastSent:RR = new Date();

Equivalent to final – no one may change the value of lastSent. The semantics are the same as final in that a value must
be assigned before exit from the constructor or at initialization if static. Anyone may still modify the value of Date.

This provides the beginning of some declarative control, and it is immediately clear to any reader if the variable may
be changed and who may change the variable – but in all cases the target instance is completely open to change by
anyone (lastSent.setTime(12345)).

Also note that the form:

public Date lastSent:RW = new Date(0);

is logically equivalent to the common pattern where the variable is private but a getter and setter are defined:

private Date lastSent = new Date(0);

public Date getLastSent(){ return lastSent; }

public void setLastSent(Date date){lastSent=date;}

So the tags remove the source lines for the getter, and indicate the usage of the variable at the point of declaration.
Execution time is usually the same since optimizing compilers will reduce this to a simple variable fetch or assignment.

Some setter method is still required, and is valid since the owner executes the setter logic and may modify the
variable. This method may also handle validation of the new value, and possibly update other related variables

Also note that this is an unsafe implementation since the reference returned by getLastSent allows the caller to
modify the (private) Date instance, and the setLastSent method allows the caller to retain a reference to the Date
passed and also change the value at a later time. In both cases, the Date instance should be cloned.

Finally, all of these tags are optional – the developer is free to make a variable public, using tags to control access, or
continue to declare it as private with a getter method and (if needed) a setter method. Using public/tags does erode
encapsulation, and changes the API of the Class. Likewise, a later decision that a public variable needs to be changed to
private with a getter/setter will also change the API and may be a breaking change. The SyncProperty annotation
discussed under Synchronization Tags may alleviate this problem.

It is expected that most non-trivial Classes will use a mix – with some simpler variables declared as public with tags,
and other variables as private. If some future version of Java supports the uniform access principle [11] or SyncProperty,
so that access to either a variable or a method appears the same to a caller, then the risk of a breaking change to the
API would be reduced or eliminated.

2) Variable Assignment Rules
When a variable is assigned to another variable, the tags are independent and may be set as required by the developer.

For example, the systemStart and lastSent variables in the Message system would normally be defined as:

public static Date systemStart:RR = new Date();

public static Date lastSent:RR = new Date();

to indicate, and assure, that both of these will always reference the same target instance (the same as final).
Now, if you define a new Class you could have this:

public class MyClass {

 public Date myStart:WW = Message.systemStart;

 public Date myLast:WW = Message.lastSent;

which allows anyone to change the object instance assigned to myStart or myLast (or set them to null). More likely,
these tags would be set as RW (no outsider may reassign) or RR (to assure that these variables always reference the
same instance within MyClass as in Message):

public class MyClass {

 public Date myStart:RR = Message.systemStart;

 public Date myLast:RR = Message.lastSent;

33 International Journal of Computer and Systems Engineering Volume 1 Issue 1,

 2020

. . . .

3) References
Any instance of an Object is always accessed through a reference. This is usually visible as in the statement:

public final Date createdAt = new Date();

where the variable createdAt contains a reference to the Date instance. Even in more obscure cases such as:

public String formatted = new Date().toString();

a reference (visible only to the compiler) will be created, assigned the new Date() instance, used to execute the toString
method, and then abandoned.

A reference always has a target (object) instance (or may be null), and several different references to the same target
instance may exist simultaneously.

The initial owner of any target instance is defined as the first variable to which a reference is assigned at instantiation
[i.e. the result of the constructor of the instance].

We do not say that an instance is mutable or immutable, rather we control whether an instance may or may not be
changed through a specific reference. And note that while an instance may be immutable when accessed through a
given reference, there may be other references for which that same instance is mutable (unless declared Pure).

4) Type Tag Specifications
The type specification associated with a reference variable may also have a 2-character tag, with the same semantics
as for a variable. When a type is tagged immutable (for either the owner or outsiders), then for the target object
instance (in the corresponding owner or outsider context):

• All accessible (visible) variables are treated as immutable (RR).

• Any object instance referenced through a variable is immutable,

• Only immutable methods may be invoked.

If a type is tagged as mutable then the tag declarations of variables and types within the target instance may still control
access.

Hence, combined with the tags on the variable, we might have the following (partial) list of possibilities (again
dropping final and static):

public Date:WW lastSent:WW = new Date();

Which is the same as just public or no tags – anyone may change either the value of the lastSent variable (i.e. which
Date instance is referenced or null), or call a method of Date (e.g. lastSent.setTime(…)) which changes the semantic
value.

public Date:RW lastSent:RW = new Date();

Where outsiders cannot change which Date instance is referenced, nor change the semantic value of the referenced
instance, but the owner logic may.

This is an important specification – any modification may only be performed by the logic within the owning Class.
And this is clear to any reader at the point of declaration.

public Date:RW lastSent:RR = new Date();

Where neither outsiders nor the owner can change which Date instance is referenced. The owner logic may change the
semantic value of that Date.

The best definition of systemStart would be:

34 International Journal of Computer and Systems Engineering Volume 1 Issue 1,

 2020

public Date:RR systemStart:RR = new Date();

where both the variable and Date instance are immutable – no one may change either which instance of Date is
referenced nor change the semantic value of Date.

By the Type Assignment Rules, no other reference to the systemStart Date instance with any W tag can be created,
so this instance is immutable throughout the application and is termed a Pure instance.

The natural declaration of the lastSent variable would be:

public Date:RW lastSent:RR = new Date(0);

Which implies that the owning Class may update the semantic value of the lastSent Date, but that lastSent will always
reference the same Date instance.

This is important because any outside caller knows that they may safely retain a copy of this reference if they need
to track the timestamp of the last message sent. [In a high-volume application, this may well save millions of method
calls and cloned Date instances. Note that we are ignoring concurrency issues here.]

The RR tags are also permitted on primitive types for completeness, but are redundant since all Java primitives are
inherently immutable. So you might have:

public static int:RR maxSentMessages:RR = 24;

5) Pure Instances
When an object is instantiated and assigned to the initial owner reference, it may also be designated with a P (pure)
tag instead of RR for the type. This requires that the constructor itself is read-only (see Constructors). (P may also be
used instead of RR for a variable.)

This implies that this instance is RR when referenced via the owner variable, but the important point is that by the
assignment rules we are assured that no mutable reference can ever exist for this instance. The Pure tag may also be
preserved on assignments to other variables, maintaining the fact that this instance is immutable throughout the
application.

So now the best declaration for systemStart would be:

public Date:P systemStart:P = new Date();

This statement clearly reveals the intent of the developer and conveys to any reader, the compiler, and any future
maintenance developer the important information that:

• The systemStart variable will always refer to the same Date instance,

• The Date instance referenced by systemStart is immutable throughout the application.

Note that some Classes – such as String and LocalDate – are Pure by design, no mutating methods exist. The Pure tag,
however, is more flexible in that it allows specific instances of a normally mutable Class to be declared immutable.

Instances may also be determined to be pure at runtime – see Pure at Runtime. This is the only situation where
immutability cannot be enforced during compilation.

6) Type Assignment Rules
When a new instance is assigned to a variable, the tags on the receiving type (target) must be consistent with the source:

35 International Journal of Computer and Systems Engineering Volume 1 Issue 1,

 2020

Source Target Notes
WW WW, WR,

RW, RR
Allows passing of the owner tag as
writable, or essentially duplicating
ownership to another context. Either
tag may be upgraded to R.

RR RR Must be preserved. Cannot be
upgraded to P since it is not known if
any mutable reference exists.

P P, RR P may be downgraded to an RR.

Within the same context (owner or outsider)

WR WR, RR Can upgrade the W to an R.

RW RR, RW Can also upgrade the W to R.

From source of owner to target of outsider

WR WW, WR, RR W for outsider may be duplicated to
owner within this new context.

RW RR Outsider R must be extended.

From source of outsider to target of owner

WR RR Owner R must be extended

RW WW, RW, RR W for owner may be duplicated

Table 1

For some examples (ignoring tags on the variables for simplicity):

public class MyClass {

 public Date:P myStartA = Message.systemStart;

 public Date:RR myStartB = Message.systemStart;

 public Date:RR myLastA = Message.lastSent;

 public Date:WW myExampleWR= Assuming Date:WR

where myStartA preserves the Pure tag, but myStartB downgrades this to an RR. Note that this downgrade is important
since myStartA is now restricted in that only variables with a Pure target instance may be assigned (which is great if it
can be supported).

myStartB on the other hand can allow an assignment from a variable with any tags for the target type – a P can
downgrade to an RR and any other tags can always upgrade to an RR for access through this reference.

myLastA must be an RR since Message.lastSent is defined as Date:RW lastSent, so the R for an outsider must be
applied to both the outsider and owner tags in this new context.

Conversely, myExampleWR can replicate the W tag for the outsider to both the outsider and owner tags within the
MyClass context. Note that the Date:WR specification for myExampleWR does convey important information – the
original owner of this instance will make no changes to the target and essentially hands it over to outsiders. (This usually
occurs when returning an instance from a method.)

If a P is preserved, this tells the reader, any future developer, and the compiler, that the target instance is immutable.
There may be other references to the same target instance, but every such reference must be at least an RR. Preserving
a P tag allows the compiler to utilize all possible optimizations. For example, a P tag may allow the compiler to bypass
synchronization associated with some methods of this Class (see Pure at Runtime).

IV DECLARATIONS WITH TAGS

The goal is to allow the specification of R/W tags throughout the type specifications of the language – beyond the simple
variable and type declarations discussed previously.

7) Arrays
The declaration of an array may include the normal tags after the type of the array elements, and also include tags
within the brackets to indicate whether new elements may be assigned to slots within the array. For example,

36 International Journal of Computer and Systems Engineering Volume 1 Issue 1,

 2020

public Date:RW[:RW] dateArray:P = new Date[12];

or the equivalent

public Date:RW dateArray:P[:RW] = new Date[12];

declare an array where the elements are Date instances which may be changed by the owner and where the owner
may assign new instances to any of the elements of the array. The dateArray variable itself is Pure so it will always
reference the same array instance.

If an array has multiple dimensions, then the tags within the brackets control the allowed assignment to each
dimension. For example,

public Date:RW[:P][:WW] dateArray:P = {new Date[1], new Date[3], new Date[5]};

defines a ragged Date array. The first dimension contains 3 sub-arrays with 1, 3, and 5 slots respectively. Anyone may
assign a new element (or null) to any of the sub-arrays, but each sub-array itself will always be the same array instance.
Only the owner may change any of the target Date instances assigned to the arrays (even if the instance was assigned
by an outsider).

8) Generics
Tags may also be applied to generic specifications, and recursively to any embedded specifications. So the original
definition:

public static final List<Message> sent = new ArrayList<>();

should be tagged as:

public static List:RW<Message:RW> sent:P = new ArrayList<>();

which specifies that the List may not be modified by any outsiders, nor may any Message instance contained within the
List. However, the owner may modify the List itself (add or delete entries), and may also modify any Message instance
contained within the List (e.g. set the time acknowledged). The actual List instance will not change since sent:P is
specified.

Since there may be multiple readers and the owner may update the list, in a multi-threaded environment it should
be synchronized as:

List:RW<Message:RW> sent:P = Collections.synchronizedList(new ArrayList<>);

and the Message Class should also provide the appropriate synchronization (or use Synchronization Tags).
A more complex example could be something like:

public Map:RW<Date:P, List:RW<Message:RW>> history:P = ……

Which (presumably) represents a Map, keyed by a Date (with 00:00:00), with a list of the Messages processed on that
Date. The owner may modify the Map (add a Date), may modify each List (add a Message), or any Message itself (set
the time acknowledged). No outsider may make any changes at any level of this structure. Also, any Date instance
added as a key must be immutable throughout the application (always a good quality for the key of a Map), and the
history variable will always refer to the same Map.

This essentially allows the developer of the Message system to provide a safe view of an internal working data
structure to all outsiders. Without R/W tags, to do this safely would require all the complexity discussed above (creating
deep clones at every level of the structure) and significant runtime overhead. (Ignoring any synchronization issues in
this example.)

9) Declaration of Generics
The compilation of generics requires additional logic to determine if a generic is R-safe – that is, it treats all actual
instances of the type parameter(s) as read-only.

See [8] and [9] for an explanation of how generics are implemented in Java. Note that it is not possible to instantiate
a new instance of a generic type T within the Class, so all code within the generic will be an outsider for any instances

37 International Journal of Computer and Systems Engineering Volume 1 Issue 1,

 2020

of type T, and only the outsider tag is effective. However, the owner tag can also be provided and is important
documentation to indicate to a reader if instances may be modified by the original owner.

A trivial R-safe generic which returns a timestamped toString() might be:

public class GenericRSafe<T> {

 public String timeStamped(T obj) {

 return String.format("At: %,d -- %,s", System.currentTimeMillis(),

 obj== null ? "(null)" : obj.toString()); }

}

since all of the methods invoked within timeStamped are read-only. (toString is known to be read-only since
Object.toString:R is read-only, and can be overridden only by a read-only method – see Method Overriding).

So this generic may be instantiated by either:

new GenericRSafe<MyClass> or new GenericRSafe<MyClass:R>

On the other hand, the declaration:

public class GenericNotRSafe<T extends Date> {

 public void setToNow(T obj) { obj.setTime(System.currentTimeMillis()); }

}

is not R-safe since the setToNow method mutates the obj parameter. This can be instantiated by

new GenericNotRSafe<Date>

but will generate a compile error on:

new GenericNotRSafe<Date:R>

[The author believes, but has not verified, that all of the standard Collection Classes are R-Safe.]

10) Tagged Generics
Although in general an R-Safe generic provides the most flexibility, the type specified in a generic may also be tagged:

public class GenericWithR<T:R>

to require that any instantiation specify an actual type with an R (or P) tag. So:

new GenericWithR<Date>

will generate a compile error.
The safest declaration for a Map might require that all keys be Pure:

interface Map<Key:P, Value>

11) DownCasts and UpCasts
A variable may be explicitly upcast to a more specific type, or (usually implicitly) downcast to a less specific type:

public Date myDate = new Date();

public Date myDateA = myDate; // No cast

public Object obj = myDate; // Downcast

public Object obj = (Object)myDate; // Explicit downcast

public Date myDateB = (Date)obj; // Explicit upcast

While upcasts will often appear in source code for specific situations, most downcast situations are implicit and are very
common as the parameters or return types of methods. For example, a simple logging system might declare:

38 International Journal of Computer and Systems Engineering Volume 1 Issue 1,

 2020

public void info(Object obj) …

public void error(Object obj) …

where any type of object may be passed, and the toString method invoked to obtain the information to be logged (plus
a check for null).

Just as in any assignment, R/W tags must be preserved and may be upgraded in either a downcast or upcast. More
importantly, when generics are specified, this rule must be observed at every level of the type structure. For example:

public List:RR<Map:RR<Date:P, List:RR<String>> list1 = ….

public List:RR<Map:RR<Date:P, List<String>> list2 = list1 // compile error

list2 = list1 fails since the RR on the embedded List:RR<String> is not preserved.
An assignment is termed ragged if the generic structure is compressed – for example:

public List:RR<Map:RR<Date:P, String>> list1 = ….

public Object objA = list1; // Fails

public Object:RR objB = list1; // OK (RR preserved)

The general rules are that in the case of ragged assignments:

downcasts The highest (most restrictive) R/W level from the source
must be preserved by the target

 If all source entries are Pure then may be assigned to Pure
(or downgraded to RR)

upcasts Any source R must be preserved, distributed to all levels of
the target generics. Any owner or outsider tag must be
upgraded if crossing to the opposite context

 Any W may be upgraded to an R

 If the source is Pure the target may be Pure

For example,

public List:RR<Date:RR> list1 = ….

public List:RR<Object> list2 = list1; // Fails, Date:RR not preserved on Object

public Object obj1 = list1; // Fails, no RR tags preserved

public Object:RR obj2 = list1; // Succeeds

list1 = (List:RR<Date:RR>) obj1; // Succeeds

list1 = (List:RR<Date:RR>) obj2; // Succeeds

12) Cumulative Immutability
Immutable status may occur at any step through a chain of references. For example:

fooA.fooB.fooC.someVariable = ….

will be disallowed if the type tag at any step is R. In this example, if fooB is defined as:

SomeClass:RR fooB;

then all references to the right of fooB become immutable so the assignment statement will generate a compile error.

V METHODS, CONTEXT, OWNERSHIP TRANSFER

When a method is invoked, there are several important mechanisms involved:

• The method may be declared as immutable and cannot modify any permanent variable,

39 International Journal of Computer and Systems Engineering Volume 1 Issue 1,

 2020

• Parameters may be declared as immutable,

• Return values may be tagged to indicate mutability within the context of the caller,

• Ownership of an instance may be transferred into, or returned from, the method (in limited
contexts).

G. Immutable (Read-Only) Methods
A method of a Class is considered immutable if during execution:

• No instance or static variable is assigned a new value

• All parameters are treated as immutable,

• All internally referenced object instances are treated as immutable,

• Any referenced instance or parameter will be passed to any other method as an immutable
parameter,

• The method does not return a reference to this, or any instance or static object, as a mutable
reference.

Note that an immutable method may still return different values on successive calls. For example,

System.currentTimeMillis is read-only (R? below).

H. Method Tags
A method is declared to be mutable/immutable by appending one or more compatible tags to the method name with
one of these values.

Tag Semantics
W or no tag Method is a mutable method (default).

R Method is immutable as defined above.

C Method is immutable during construction.

T Modifies only transient variables

L Modifies only instance variables.

? All other tags should be accepted by the
compiler, but this is forced.

Table 2

A W method may change the state of this instance (if an instance method), a parameter (if so tagged), a mutable
referenced instance, or a global variable. This is the implied semantics of all methods currently (and the default if no
tags).

The C tag may be applied to a constructor (although R is preferred stylistically in order to be consistent with other
methods). It may also be applied to any other method within the Class (for example, a private method invoked by
multiple constructors to perform common initializations). The difference is that any constructor or C-tagged method
may modify instance variables during the construction phase of an instance. A C-tagged method is considered a mutable
method if invoked outside of the construction of an instance.

A T tag restricts modifications to transient instance variables, target instances referenced by transient variables, or
any globally visible transient variables or instances. For example, some objects compute and save a hashcode in a
transient variable. T may be combined with an R tag.

Note that this is a major expansion of the usage of the transient keyword, and (if with R) differentiates between
changing the semantic value of an instance versus incidental changes (such as computing and saving a hashcode).
Presence of a method with a T tag allows treating this method as an immutable method, but may preclude treatment
of any instance as Pure since cache coherence mechanisms may be bypassed when in fact a transient variable has been
modified. See Future Research.

40 International Journal of Computer and Systems Engineering Volume 1 Issue 1,

 2020

The L tag is a restriction indicating that this method accesses (or modifies) only instance variables. This is provided
to enable possible performance improvements (especially in multi-core contexts) and as a design notice for future
maintenance cycles.

The ? tag is provided to handle those cases in which the developer declares that the semantic state of the instance
meets all the requirements of the other tags, but that some of the formal rules must be violated. For example, issuing
a log message (calling a mutable method), or the accumulation of profiling statistics.

If tagged as ? the compiler will issue warnings for all cases which would normally result in a compile-time error.

1) Compatability Rules
L, T, and ? are all narrowing and can be used with any other tag (although ? with W is meaningless). W with R is an
obvious contradiction. R with C is allowed but redundant since R is more restrictive.

JNI native methods may also be tagged but must include ? if any tag beyond W appears. This is entirely at the direction
of the developer and the compiler can offer no further analysis.

For example, using the sample Message Class above:

public boolean hasBeenSent:R()……

public void markAsSent:W(Date timeSent)……

specifies that the hasBeenSent method will not change the state of this Message instance (or any global variable or
instance) but the markAsSent method may.

I. Method Parameters
On a method call, the caller is considered as the owner of all parameters, and the method (the logic within the method)
as the outsider in terms of tag positions.

For each parameter, tags may be specified for both the type and the variable of the parameter. For example:

public void markAsSent:W(Date:RR timeSent:RR)

The initial R on timeSent assures that no assignment is allowed within the method, which can serve as documentation
for the developer and an internal consistency check. [The owner tag is meaningless since all parameters are passed by
value, so the caller technically does not have access to the variable within the method. The formal syntax allows it for
completeness.]

The first tag on Date indicates that this instance is immutable by the outsider (method logic), and may not be passed
to any other method unless through an immutable parameter – so the caller is assured that the passed instance will
not be modified within this method. [Note that if this method itself is W, it would be possible to change a parameter
marked R if there is a globally visible mutable reference to the same instance, or if the same instance is also passed to
another parameter as mutable.]

The second tag is ineffective since the method logic is always considered to be an outsider, but can serve as
documentation that the instance may be modified by the owner (caller) during the execution of this method (e.g. by
another thread). Note that since the method is considered the outsider, if the passed reference is assigned to any other
variable the owner tag must be upgraded to an R by the assignment rules.

A pure (P) may also be specified and requires that any actual argument passed must be Pure.
So the shorthand in this case could be:

public void markAsSent:W(Date:P timeSent:R)….

which is a method which may mutate this instance, but will not modify the instance referenced by timeSent, will also
not change the value of timeSent itself, and the caller guarantees that the value of the Date will never be changed
(which is an over-specification in this case).

If the parameter is defined as mutable, the method may need to make a defensive copy if it intends to hold a
reference beyond the scope of the method call. For example, the Message constructor in the original example should
make a copy of the passed character array unless it is marked as Pure.

41 International Journal of Computer and Systems Engineering Volume 1 Issue 1,

 2020

If the method itself is marked as R, then any untagged parameter type is inferred to be R and a parameter explicitly
tagged as W is an error.

J. Method Overloading
The tags of the parameter types are considered part of the signature of the method when determining overrides and
overloading. For example, two constructors could be declared as follows:

public Message:R(char[] msg:R)

public Message:R(char[]:P msg:R)

where the first constructor (with implied WW tags for char) needs a defensive copy of the character array, while the
second form could safely store a reference.

For overloading the compiler will always favor the method with the most restrictive type tags which can be applied,
considering parameters from left to right. So given these definitions:

public void someMethod(Date param1, int param2)

public void someMethod(Date:P param,int param2)

the second method will be chosen any time the actual parameter at the call site is Pure.
For overloading it is an error to have tags on the method itself as the only difference in the method signature.

K. Method Overriding
For an override, a method with an R tag can override a method with a W, but not the other way around. If an overriding
method specifies no tag at all, then it is inferred to be the same as the method which is overridden (if overriding an R,
then the current method must validate as R).

As an example, consider:

In Foo: public int someMethod:W(…..)

In FooA extends Foo: public int someMethod:R(…..)

Foo myVar = new FooA(….)

myVar is declared as Foo (with the mutable method), and will be treated as such during compilation. During execution,
myVar actually contains a reference to an instance of FooA (with the immutable version of the method) so invoking
myVar.someMethod(….) can do no harm. Conversely, overriding some method:R by method:W would erroneously
execute a mutable method.

Note that a call to super.someMethod is a compile-time error within FooA.someMethod since an immutable method
would be invoking a mutable method.

Within Object, the clone, equals, getClass, hashCode, and toString methods should be flagged as R. It may also be
possible to tag the notify… and wait… methods as R or R?.

Note that this is a breaking change in many cases. For example, in recent Java versions String caches the value of the
hashcode in the hash and hashIsZero fields – these must be changed to be declared as transient and the hashcode()
method tagged as hashcode:RT(). The toString:R() method may also lead to many compile-time errors for overriding
Classes in which toString has not followed the expected convention and is not a read-only method. Many of these may
be correctable by defining some fields as transient and then declaring toString:RT().

An alternative would be to declare an intermediate:

public class ObjectTags() extends Object {

 public Object clone():R{ … }

 public boolean equals(Object obj):R{ … }

…..

which overrides all of these methods as read-only. Then new code Classes could extend ObjectTags. While not a
breaking change to existing code, this also introduces additional complexity into the language. In the worst case, this
approach could lead to distinct tagged and untagged versions for many libraries.

42 International Journal of Computer and Systems Engineering Volume 1 Issue 1,

 2020

L. Return Types
When a method returns a value, the method is considered the owner and the caller the outsider. The return value type
may be tagged in the usual way.

For example, if it is decided to hide the lastSent variable, then this implementation can be specified:

private static final Date lastSent = new Date(0);

public Date:RW getLastSent:R() {return lastSent;}

which specifies that the outsider (caller) may not modify the object instance, but that the owner (method) still retains
a reference to this instance and may change it. [This may be the single most valuable feature of this whole approach –
the owner of an instance can return references and be assured that no outsider will modify that instance.]

If assigned to a local variable, then the owner tag must also be upgraded to an R:

public class MyClass {

 private Date:RR lastSent=Message.getLastSent();

 ….

}

Alternatively, if a defensive copy is created and returned then this could be specified as:

private static final Date lastSent = new Date(0);

public Date:WR getLastSent() {

 return (Date)lastSent.clone();

}

which tells the caller, essentially, that this is a clone which they may modify as desired. [See Transfer of Ownership for
a stronger approach.]

This can be even more important when a collection is declared as immutable:

List:P<Message:P> someMethod(….)

which specifies both that the list is immutable, but even more importantly that all of the object instances contained
within the list are immutable.

For example, consider a hypothetical method which retrieves a list of messages sent to a given IP address. If declared
as:

public List:RW<Message:RW> getMessagesSentTo:R(IPAddress:P ip:R);

then the returned list may be changed by the owning Class after being returned to the caller. The implication is that the
method has simply returned a reference to an internal working list.

If the method has actually created a copy of the working list (and a deep clone of each Message), then this could be:

public List:WR<Message:WR> getMessagesSentTo:R(IPAddress:R ip);

which implies that the caller (outsider) is free to make changes, but that the method has not retained any mutable
references. (But note that this is not strictly enforced by the compiler!)

The caller may receive this as a WW since this is an assignment from the owner to outsider:

public List:WW<Message:WW> someVar = getMessagesSentTo(IPAddress ip);

If only a shallow clone has been utilized for the Message, then the correct declaration is:

public List:WR<Message:RW> getMessagesSentTo:R(IPAddress:R ip);

which indicates that the caller may modify the List if desired, but that the Messages within the list cannot be modified
by the caller. However, the Messages may still be modified by the owner. So this assignment, with the required context
change upgrade of RW -> RR, would be:

43 International Journal of Computer and Systems Engineering Volume 1 Issue 1,

 2020

public List:RW<Message:RR> someVar = getMessagesSentTo(IPAddress ip);

M. Assignment or Return of a Parameter
Any input parameter which is assigned to a variable within the method obeys the normal assignment rules above. In
particular, if the declaration is:

public void markAsSent:W(Date:R timeSent:R)

then an internal assignment such as:

Date:RR localVariable = timeSent

must promote the implied owner tag to an R since it is in a different ownership context. (This may be inferred by the
compiler in order to compile untagged source.)

Any parameter which is returned is treated as an implicit assignment so must also be promoted to an RR if returning
any input parameter tagged as RW.

N. Transfer of Ownership
In some important contexts, a caller may pass ownership of an instance into a method, or a method may export the
ownership of a returned instance to the caller.

In either of these cases, a T (transfer) tag is the single tag for the type.
For example, the method to send a message could be:

public static void sendMessage:W(Message:T msg:R)

The T tag requires that from the context of the caller:

• The caller is the current owner of this instance,

• No other references exist.

The compiler must generate an assignment of null to the calling variable (unless it will immediately be out of scope).
Within the receiving method, the actual argument is taken as a WW. Also note that the actual argument may well not
be visible, for example in:

sendMessage(new Message(…));

the compiler creates a hidden variable for new Message which is immediately out of scope.
If the caller would like to have a reference to the Message, then sendMessage might be declared as:

public static Message:RW sendMessage:W(Message:T msg:R)

so the caller may invoke this as:

public Message:RR myMessage = sendMessage(new Message(“My Message”.toCharArray())

where the returned RW is promoted to RR as required by the rules of assignment. (It is also possible to return
Message:WW since new Message defaults to WW. This is usually not advisable, but might be useful during the
transition of a codebase.)

If ownership is transferred upon return from a method, then the same rules as above apply to the logic within the
method. Transfer of ownership can be especially useful if a factory method is defined which instantiates and returns a
complex instance. For example, if a factory method is defined which accepts a String parameter, converts to a char[],
and instantiates a Message, this would be declared as:

public static Message:T messageFactory:R(String:P msg:R)

and the caller is assured that no other references exist after the return from messageFactory.

44 International Journal of Computer and Systems Engineering Volume 1 Issue 1,

 2020

O. Scope Implications
When a method or local scope within {..} brackets exits, any local variables cease to exist. This allows utilization of
mutable variables internally, but still return immutable values to the caller.

For example, assuming that deepClone and isToIP methods exist for the Message object, then the getMessagesTo
method might be implemented as:

public List:P<Message:P> getMessagesTo:R(IPAddress:P ip:R) {

 List<Message> rslt = new ArrayList<Message>();

 for(int i = 0; i<sent.size(); i++)

 if(sent.get(i).isToIP(ip))

 rslt.add((Message)sent.get(i).deepClone());

 return rslt;

}

whereby the rslt List (and the cloned Message instances) are mutable within the method, but can be returned as pure
since no other references exist upon exit (or could be WW to allow the caller to manipulate).

P. Lambdas
The parameters (and variables) of lambda expressions may be typed exactly like method parameters if explicitly typed.
The tags for the return value may be appended after the closing parenthesis of the declaration. For example,

(Date:R startDate, Date:R endDate):P -> { return ….. }

is a lambda which takes two read-only parameters and returns a Pure value.
In order to adapt to common usage, in an implicit lambda expression the type tags may be appended to the variable

name:

(startDate:R, endDate:R):P -> { return ….. }

indicates that both startDate and endDate will not modify the (implied) Date instance passed.

Q. Constructors
A constructor can be tagged like any other method but with some critical differences:

• modification of any instance variable is not considered a mutation,

• the type tags normally associated with a return value may be appended after the method tag.

All of the normal assignment rules then apply, so for example the Message constructor could be declared as:

public Message:R(char[]:P msg:R)

(or Message:C) to indicate that executing the constructor has no mutable side-effects beyond the member variables.
As a stronger declaration, it could also be:

public Message:R:P(char[]:P msg:R)

which states that Message is an immutable constructor, but also that the result (the constructed instance) may be
treated as Pure. This would not work in our example, since the logic must update the Message to indicate the time
when it was sent and when it was acknowledged, but does allow a Class to specify that all instances are immutable
upon instantiation with this constructor. It would also be possible to define alternate constructors which specify
different return tags which allow mutability, or create a factory method to encapsulate all instantiations.

R. Right Hand Side (RHS) Tags
A weakness of the current final concept is that a logical contract is implied with any user of the variable – this variable
will not be modified – but the final keyword may be removed in the future without notice.

One of the examples above had this:

45 International Journal of Computer and Systems Engineering Volume 1 Issue 1,

 2020

public class MyClass {

 public Date:RR myStart:RR = Message.systemStart;

 public Date:RW myLast:RR = Message.lastSent;

}

which has semantic dependencies on the sources of the assignment. The developer of MyClass expects that
Message.systemStart (and the referenced Date) will not be modified, and that Message.lastSent will always refer to
the same instance of Date, and that this Date instance will be updated to reflect the time when the last message was
sent. If the Message Class is modified in the future to use a different mechanism to record the system start time or the
last sent time, then this implied contract is broken – again with no notice to any referencing Classes.

In the extreme Message.systemStart and Message.lastSent could be changed to Date:WW systemStart:WW and
Date:WW lastSent:WW. and the assignment would still be legal since a W may always be promoted to an R.

This is addressed by allowing tags on the right-hand side of an assignment to specify either:

• The minimum requirement for the source tags, or

• An exact match to the tags on the source (with an X before the tag)

Two sets of tags may be specified – the first for the source variable and the second the type.
So the safe definition of MyClass would be:

public class MyClass {

 public Date:RR myStart:RR = Message.systemStart:RR:RR;

 public Date:RW myLast:RR = Message.lastSent:RR:XRXW;

 }

which specifies that Message.systemStart must be declared, as a minimum, as Date:RR systemStart:RR. A Pure in place
of the type:RR is also legal and would be preferred in this case to assure that no mutable reference exists.

The RHS declaration for Message.lastSent specifies that the variable must always refer to the same Date instance
(RR or P), and that the Date instance must be declared as :RW (exactly) – implying that the Date will be updated to
always reflect the time of the last message.

This ensures that if the semantics of the Message Class have been modified, at least a compile error occurs to notify
the developer of MyClass. This can be especially important when using third-party libraries where the source code may
not be available to the MyClass developer.

1) Method Calls
In the same vein, tagging a method as read-only is an implied contract. Tags may be specified at the point of call to
verify this contract:

myVar = referenceVar.someMethod:R(param1, …)

will generated a compile error if someMethod is not tagged as read-only.
Again, this is most useful if the developer of the application does not have control over the library which provides

someMethod, but can also be useful within any large application to ensure that a future maintenance cycle does not
inadvertently violate an assumed contract.

At the very least, this provides documentation at the point of call that someMethod is expected to be read-only.
In all such contexts, even though annoying that the expected contract with a library has been changed, it is still

preferable to fail at compile time instead of introducing runtime errors.
Note: These RHS tags are effective during compilation, but will not detect a problem if a new Jar with the updated

library is introduced to the classpath without recompilation. See Future Research – Enhanced ClassLoader.

VI CLASS AND INTERFACE TAGS

The Class or Interface may also be tagged in order to specify the minimum level of tags for:

• Static variables

• Static variable types

• Static methods

46 International Journal of Computer and Systems Engineering Volume 1 Issue 1,

 2020

• Static method return types (outermost level only if a generic)

• Instance variables

• Instance variable types

• Instance methods

• Instance method return types (outermost level only if a generic)

• Constructors (not present for an Interface)

• Constructor type tag (not present for an Interface)

This is an optional (and somewhat clumsy) construct but can be used to:

• Allow the designer of the Class to establish some basic mutability requirements,

• Allow the compiler to verify that there are no violations, and

• Provide the reader with an overview of the mutability of the Class..

[There is nothing worse than the JavaDoc stating that a Class is immutable, and then find that some maintenance cycle
has introduced a setter method!]

Since this consists of a large number of settings, the syntax adapts the [..] of arrays (two), with comma-delimited
elements for each of the items above, in the order as given (with the first array for static settings, and the second for
instances plus constructors).

public class MyClass[RW,RW,R,RW] [RW,RW,R,RW,R,RR]

which requires, for example, that all static variables in the Class must have tags of RW (the stated minimum), RR, or P.
The same applies for each of the other positions.

Unspecified elements can be indicated by two adjacent commas and will default to W or WW. If the entire bracket
section is omitted or empty, then everything defaults to W.

At any point in the sequence, specifying * instead of tags will replicate the preceding value to all further elements to
the right:

1) public class MyClass

2) public class MyClass[WW,*][WW,*]

3) public class MyClass[P,*] [P,*]

4) public class MyClass[WW,WW,W,WW] [P,*]

5) public class MyClass[P,*] [WW,*]

where (1) is the default of no specification, defaulting to all Ws, (2) is an explicit specification of all W’s, (3) specifies a
Class where all static variables/methods and all instances are Pure, (4) specifies that static variables/methods are
mutable but all instances are Pure, and (5) is the opposite in that all static variables/methods are Pure, but instances
are mutable.

It would be possible to have the Class-level tags be substituted for any variable/method for which no tags are
specified (instead of a compiler error). The downside is that if someone is reading the code it would not be apparent
that, say, a method is in fact read-only even though no tag appears. If viewed through a good IDE, however, this
situation could be handled to show the inferred tags (highlighted by italics, coloring, or some other indication). This
might be an excellent way to convert untagged code while requiring minimum changes to the source.

For example, in the java.time package, LocalDateTime, LocalDate, etc would all be declared immutable by tags at
the Class level (instead of in the JavaDoc), and this would be guaranteed by the compiler.

public class LocalDateTime [P,*] [P, *] { … }

VII PURE AT RUNTIME

An instance created as Pure cannot then be modified.
For many common data structures, for example trees or lists, this is not a problem – the leaf nodes can be

instantiated as Pure, and then the next level/link instantiated to refer to these. For example:

47 International Journal of Computer and Systems Engineering Volume 1 Issue 1,

 2020

public class FooList<Date:P> {

 public FooList:P<Date:P> next:P;

 public Date:P date:P;

 /** Create a new node on the front of the list */

 public FooList:R(Date:P date,FooList:P<Date:P> next){

 this.date = date;

 this.next = next;

 }

 /** Create the initial node of the list */

 public FooList:R:P(Date:P date){

 this(date, null);

 }

}

However, if 2 (or more) instances hold references to each other, then neither can be declared to be Pure at compile
time. For example,

public class FooA{

 private FooB:RR refFooB;

 public setFooB(FooB:RR fooB){

 this.refFooB = fooB;

 }

}

public class FooB{

 private FooA:RR refFooA;

 public setFooA(FooA:RR fooA){

 this.refFooA = fooA;

 }

}

won’t work since both must be instantiated and then the setFooA/setFooB methods must be invoked to set the cross-
reference.

This issue extends to the general case of any group of objects which have references to other objects within the
group, but which are otherwise immutable after initial construction. For example, a doubly-linked List, or some tree
structures in which each node has a list of children but also a reference to its own parent. The situation might also occur
if using an untagged library. For example, if a library provides a method to read a page from the Web, parse the HTML,
and return the root of the parse tree, then it might be called as:

HTMLNode:RR rootNode = retrievePage(<URL>);

and the HTMLNode:RR declaration implies that all of the objects in the parse tree are in fact Pure since no mutable
reference exists (assuming that retrievePage has not leaked a reference).

The objects assigned as Pure at initial instantiation are termed Pure at Birth. The second set of cross-referencing
objects cannot be pure at birth, but may be determined to be Pure at Runtime (though this may be an expensive
operation).

In order to determine if an object can be considered Pure, it must be determined that all existing references to that
instance are RR or Pure (since none of these references may subsequently be assigned to a mutable reference).

This requires logic similar to the Garbage Collector – tracing all references to objects from the root(s). In addition,
this trace must refer to the full type information (signature) rather than the type erasure normally used by the JVM.
For example, List<Date:RR> implies that references stored within the List are read-only to the target Date object.

There are several ways in which this functionality can be implemented and made available to the developer – as
methods provided by java.lang.System or java.lang.Runtime.

S. Pure Single-Instance
This would provide a method of the form:

static public Object:P asPure(Object obj);

which would trace all live references to obj and return null if any mutable reference is detected or a reference to obj
which has been elevated to Pure.

48 International Journal of Computer and Systems Engineering Volume 1 Issue 1,

 2020

While the simplest to invoke, this method would be expensive.

T. Multiple Instance
This would provide a method of the form:

static public Object:P[] asPure(Object[] obj);

which would take an array of objects and return a 1-1 array with either a null or pure reference.
This also requires a full trace from the root(s) but amortizes the expense over many objects.

U. Enhance Object (or ObjectTags)
As support for Pure objects, the Object Class would be enhanced as follows:

public class Object {

 private boolean pure = false

 public boolean isPure() {return pure;}

 public Object:P asPure(){return pure ? this : null;}

………...
}

(where the pure variable would probably be implemented as a bit-flag in the object header) and a System method
added:

static public void determinePure();

which will scan all reachable objects and set their pure flag.
Clearly, enhancing the definition of Object is a radical change to the language (and JVM), and may well have

insurmountable compatibility problems with existing code, but does add critical immutability capability to the language
core, and automatically addresses the pure/mutable status of all objects every time determinePure is executed.
Compatibility issues may be alleviated by using unusual names for the above or add this to the ObjectTag Class.

Note that the determinePure execution might be designed to execute a happens-before protocol just before exit (i.e.
synchronize all caches on a multi-processor system). This supports some of the optimizations discussed below.

V. Pure at Runtime Optimizations
Note however the following potential optimizations when determining Pure at Runtime:

• Any object which is Pure at Birth is marked as pure upon instantiation,

• As soon as the scan encounters a reference which is RR or Pure, that portion can terminate since
all paths through this reference must be immutable.

• Once marked as pure, an object will always be pure since it is not possible to create a mutable
reference.

• If Object is enhanced, setting the pure bit may be incorporated into the normal processing of
the Garbage Collector (although this adds the complexity of using the full type information
(signature) rather than the erasure).

It is not yet determined how much the above optimizations will reduce the overhead of runtime determination of
immutability, but in a heavily tagged application with a large percentage of RR instances this might be substantial. (In
the example above of an HTML parser, all of the nodes in the parse tree would be marked as Pure and scans can
terminate as soon as the HTMLRoot variable is encountered.)

W. Optimizations with Enhanced Object
If Object is enhanced to include the pure flag, there may be several possible optimizations in the JVM (or JIT compiler)
– these require further research:

49 International Journal of Computer and Systems Engineering Volume 1 Issue 1,

 2020

• Ignore synchronize processing on any instance method if pure and the method references only
instance variables (and does not have a T tag).

• Ignore the memory boundary processing for any volatile instance variable (unless transient and
any method has a T tag). Assumes the cache coherence step is included as defined above.

Both of these may require a @SkipIfPure annotation for the volatile or synchronized keyword to declare that no
variables external to the instance are dependent on these actions.

In modern applications with multiple processors and many, many threads running in parallel, reducing the incidents
of synchronization (and cache clears) can lead to major performance improvements.

X. Annotations for Tags
It would be possible to use annotations to specify tags instead of the proposed :RW mechanism.

For simple situations this would be a reasonable approach:

@tags(Date=RW, lastSent=RR)

public Date lastSent = new Date();

However, for nested declarations it would introduce the danger that a complex structure must be introduced twice and
match exactly. For example:

public Map:RW<Date:P, List:RW<Message:RW>> history:P = ……

@tags(Map=RW, Date=P, List=RW, history = P)

public Map<Date, List<Message>> history = …

would generate no warning that the tags for Message were forgotten, and worse no error if a Message instance within
the list is mutated by outsider logic. Also, if the contents of the list were a Date rather than a Message then the
annotation as shown would be ambiguous, so a more complex, nested, annotation structure would be required. The
complexity would increase further to handle RHS tags, method tags, and Class/Interface tags.

These considerations led to the rejection of an annotation-based approach in favor of the :RW syntax as described.

VIII CONCURRENCY ISSUES

In a multi-threaded environment, the programmer must be aware of concurrency issues when declaring a non-private
variable. This will become even more prevalent if tags are used to protect a public variable instead of making it private
with synchronized getter and setter methods. The Message Class in this document would almost certainly operate as
a multi-threaded application.

Y. Synchronization Tags – S, U
If a variable is visible (public, protected, or package visible) with tags, then any requirements for concurrent access to
that variable must also be specified. This is supported by defining an S tag for a synchronized R (read), or a U tag for a
synchronized W (update) (and implied synchronized read). These tags may also appear for a method, but are redundant
with (and will be implemented by) the existing synchronized keyword.

Combinations such as RU or SW, with synchronization for one context but not the other, are an invitation to a race
condition. This will generate an error during compilation unless flagged with a @NoRace annotation to handle special
situations where no race condition can occur.

For example, in the Message Class, declarations such as:

public Date:SU sentAt:P = new Date(0);

public Date:SU ackAt:P = new Date(0);

would handle synchronization of the target Date instance.
The type tag assignment rules of Table 1 apply, with the additional constraint that synchronization must be

preserved, so if ref is a reference to a Message with the Date:SU tags:

50 International Journal of Computer and Systems Engineering Volume 1 Issue 1,

 2020

public Date:RR myVariable = ref.sentAt;

will generate a compile error.
If the target Class is designed for concurrent usage and is synchronized internally, or is immutable by design, such as

LocalDate, the S and U tags are not necessary. This is always the goal, since preserving synchronization can be an
awkward API for callers. They are used in the contrived Message class so that the unsynchronized Date can be used
safely.

1) Basic Implementation
Given that ref is a reference to a Message then:

myVariable = ref.sentAt.getTime()

would compile to:

synchronized(ref){ myVariable = ref.sentAt.getTime(); }

For a static variable or method, the synchronized keyword would reference the Class of the object.

2) Desired Implementation
The Basic Implementation will generate code in all of the Class definitions which have S or U tags. It would be more
efficient to generate code in the target object, which can be used to support the S and U tags. This will be controlled
by the SyncProperty setting (as either a compiler flag or annotation). This will default to off initially, but may at some
point in the future default to on. If on, then the following will be active.

Any method in the target which is not already marked as synchronized would generate a shadow, synchronized
method which would invoke the original method. For example, the getTime method in Date would also compile this
shadow method:

public synchronized long getTime_S$() = { return getTime();}

which would then be invoked from any calling location with an S or U tag in effect.
Any declared variable will be compiled as a property [12 pg 80], which will hide the variable as private and create

getter and setter methods with the name of the original variable.

For: public MyClass:XX myVar = ……

where XX indicates any set of tags (or nothing) on the type, a full compilation would be:

private MyClass:XX myVar_$;

public MyClass:XX myVar() { return myVar_$; }

public synchronized MyClass:XX myVar_ownS$() { return myVar_$; }

public synchronized MyClass:XX myVar_outS$() { return myVar_$; }

public void myVar(MyClass:XX to) { myVar_$ = to; }

public synchronized void myVar_own(MyClass:XX to) {myVar_$ = to }

public synchronized void myVar_out(MyClass:XX to) {myVar_$ = to }

Separate getter/setter methods exist for the owner and outsider context if the @NoRace annotation is supported. If it
is decided that this should never be allowed, then these can be consolidated. If myVar is static, then all of these methods
would also be static.

If the variable is read-only (myVar:RR, myVar:P, or myVar:SS), then all of the setters can be eliminated. If the variable
must always be synchronized (myVar:SS, myVar:SU, or myVar:US) the basic myVar() getter and myVar(MyClass:TT to)
setter will also be synchronized.

This provides all necessary synchronization within the Class which defines myVar. At the call site, for a simple read
the myVar() method will be invoked – and the caller does not need to be aware if it is synchronized. If an S is in effect,
then either the myVar_out$S() or myVar_own$S() method is invoked (for access by an outsider or owner). Similarly, if

51 International Journal of Computer and Systems Engineering Volume 1 Issue 1,

 2020

myVar allows updates then either the basic myVar(MyClass:TT to) or myVar_ownS$(MyClass:TT to) or
myVar_outS$(MyClass:TT to) method will be invoked.

If at the call site the compiler determines that the target variable has not been re-compiled (and flagged) as a
property, then the Basic Implementation code must be generated.

Note that as in [12], the developer may also explicitly specify any of the getter and/or setter methods if desired.

The Desired Implementation is clearly a major, breaking change to the language and may be impossible to implement
as a practical matter. The property concept would be a worthwhile addition in it’s own right, and recover the
encapsulation which was lost by making variables public and using tags to control R/W access. Execution time should
be the same since most optimizing compilers will reduce the generated getter/setter methods to a simple variable fetch
or assignment if possible.

Z. Target Objects
In any application designed for multi-threaded operation, most target objects referenced by a visible variable will
themselves be synchronized internally. java.util.Date is an exception, unless re-compiled with the SyncProperty
annotation. Many other standard utility objects (e.g. Lists) are also not synchronized internally, so must be synchronized
if necessary or recompiled with SyncProperty.

AA. 64-bit Variables
Object references and most primitive values are stored atomically, and are not a concurrency issue. Visible variables
declared as long or double are 64-bit values, and on some processors may be loaded/stored in 2 separate 32-bit
operations. These must be declared as volatile (see JLS 17.7).

BB. Hiding Intermediate States
When a complex new value must be created and assigned to a (visible) variable, that variable should also be declared
as volatile so that outsiders cannot access intermediate values during construction. For example:

public String[] myStrings:RW ={“1st”,“2nd”,“3rd”};

synchronized public void addString(String s){

 String[] tmp = new String[myStrings.length + 1];

(1) System.arraycopy(myStrings, 0, tmp, 0, myString.length);

(2) tmp[tmp.length – 1] = s;

(3) myStrings = tmp

}

If myStrings is declared private with a synchronized getStrings method, then this handles the concurrency. However,
as listed above myStrings may be accessed by another thread during execution of the addString method and observe
an intermediate state of the array.

As written, it is legal for the compiler to optimize and execute line (3) first, and then lines (1) and (2), since the result
is the same in either case. However, this allows an observer in another thread to see the myStrings array during the
construction process – it may be filled with null values, have some number 1..N of the original string values (as arraycopy
is processed), or some other partial result. (See [4] for additional examples and discussion.)

The volatile keyword must be added to myStrings to ensure that all of the code before line (3) executes before line
(3) makes the new value of myStrings visible to other threads.

CC. Modifying Multiple Variables
If a single method will modify multiple (visible) variables, the only safe way for outside code to access these variables
is to synchronize on the object instance. For example,

52 International Journal of Computer and Systems Engineering Volume 1 Issue 1,

 2020

public int varA:RW = …

public int varB:RW = …

synchronized public void modifyBothVariables(int valueA, int valueB) { …. }

Then the external code must be assured that modifyBothVariables is not executed by:

int myVarA;

int myVarB;

synchronized(targetobject){

 myVarA = targetobject.varA;

 myVarB = targetobject.varB;

}

Which places a burden on the caller to understand the situation. In recent versions of Java, a much better solution
would be to define a synchronized method which returns a Record containing values for both varA and varB.

DD. Synchronizing java.util.Date
java.util.Date is largely deprecated, but still appears in an enormous amount of existing (and new) Java code. It is used
within this document to represent a well-known Class which is designed to be mutable.

The Date Class itself contains no synchronized methods, hence instances of Date will require synchronization within
any multi-threaded usage pattern or use of the SU tags.

53 International Journal of Computer and Systems Engineering Volume 1 Issue 1,

 2020

IX TAGGED EXAMPLE

Using the tags, the original Message example can now be formulated as below - which is now perfectly safe. The
Message Class exposes all of the information that any users would need, but is assured that no user can modify any
value unless one of the defined mutator methods is invoked.

This is done in the same number of lines of code (which is half the lines of code required for a safe implementation
without tags). The tags provide important information to any user about how variables may be modified, and which
methods are mutators. (And this may be even more important to indicate the API contract to any developer maintaining
this code in the future.) IDEs may also use this information to provide a more information-rich display to the user – for
example, group variables and methods by mutators (W) or read only (R).

Execution time will be more efficient since in most cases a direct variable reference replaces a method call, and
especially since it is not necessary to make defensive clones of instances. Synchronization overhead has been
introduced since we are assuming that this Class will be used in a multi-threaded environment. If Date was instead a
Class itself designed for multi-threading, and synchronized internally, then the SU tags could be RW instead.

Note that the markAsSent and markAsAcknowledged methods specify only an R tag for the input Date parameters
since they immediately utilize the primitive information required and have no dependence on whether that value is
changed in the future.

Many developers, with justification, would object that this implementation is too open and violates the concept of
information hiding – specifically that the structure of the sent and pending lists should be encapsulated within the

public class Message {

 /**/

 /* Message instance variables and methods */

 /**/

 public Date:P createdAt:P = new Date();

 public Date:SU sentAt:P = new Date(0);

 public Date:SU ackAt:P = new Date(0);

 public char:P[] theMessage:P;

 public Message:R(char[] msg:R) { theMessage = Array.copyOf(msg, msg.length); }

 public Message:R(char:P[] msg:R) { theMessage = msg; }

 public boolean hasBeenSent:R() { return sentAt.getTime() > 0; }

 public boolean hasBeenAcknowledged:R() { return ackAt.getTime() > 0; }

 public void markSent:W(Date:R sent:R) { sentAt.setTime(sent.getTime()); }

 public void markAck:W(Date:R acked:R) { ackAt.setTime(acked.getTime()); }

 /**/

 /* Static variables and methods to send messages */

 /**/

 public static int maxSentMessages:P = 24;

 public static Date:P systemStart:P = new Date();

 /** The timestamp of the last message sent */

 public static Date:SU lastSent:P = new Date(0);

 /** The most recently sent messages, up to maxSentMessages */

 public static List:SU<Message:SU> sent:P = new ArrayList<>();

 /** Messages waiting to be sent */

 public static List:SU<Message:SU> pending:P = new ArrayList<>();

 public static void sendMessage(Message msg){

 // logic to send the message

 }

 }

}

54 International Journal of Computer and Systems Engineering Volume 1 Issue 1,

 2020

Message Class. Agreed, and there is nothing in this proposal that prevents the developer from making these private
and implementing methods to instantiate a new List to return to any caller.

That is a design decision which must trade off the increased complexity and execution time against the flexibility to
make future changes to the implementation without requiring any change to the API. But also note that if initially
implemented as:

private static List:RW<Message:RW> sent:RR = new ArrayList<Message>();

public static List:RW<Message:RW> getMessagesSent:R(){ return sent; }

there is no overhead needed to clone any instances. The caller must accept the possibility that the elements of the list
may change and can make a copy if necessary. If assigned to a local variable this must be promoted to
List:RR<Message:RR>.

If the implementation of the sent mechanism changes in the future, then the getMessagesSent routine can build a
new List (with deep-clone Message instances) to be returned, and change the specification to:

public static List:P<Message:P> getMessagesSent:R()…

which is a non-breaking change to the API since only the owner tags have been changed. Some callers may have
implemented a defensive copy which is now redundant.

A subtle problem occurs if the caller depends on the fact that new messages will be added to the list as they are sent
(and updated when acknowledged). If the sent mechanism is changed as above, then this no longer holds. So the caller
might code defensively and require an exact match:

private List:RR<Message:RR> mySentList:P = Message.getMessagesSent():R:[XRXW, XRXW];

which detects the problem at compile-time rather than as a very hard to find runtime bug.

X KNOWN ISSUES

There are known weaknesses with this approach. Some can be addressed by future research but others are inherent.

EE. ? Method Tag
For such a method, the developer has forced acceptance of the method (usually as read-only) even though it does not
pass all required checks.

At least the ? tag alerts any caller to the situation, and the compiler generates warnings (instead of errors) pinpointing
the violations. This is a major improvement over just a JavaDoc statement that a method is read-only.

FF. Native (JNI) ? Methods
The compiler can offer no assistance when dealing with native methods. Again, this situation is no worse than an

existing JavaDoc claim that a method is read-only.

GG. Reflection, SecurityManager
The tags proposed here are not a guaranteed security environment. The java.lang.reflect methods may already be used
to access a private variable, or modify a variable declared as final.

Additional research is needed to determine the interaction of these tags with the capabilities of the reflection
mechanism, and also with any SecurityManager defined for an application.

XI TESTBED COMPILER

A modified Java 8 compiler is available at:

https://drive.google.com/open?id=0B9h3YMINZ271dWcyS1RjbEZLMHc

and contains:

• A Start Here text file which describes the contents of the directory, and how to execute the compiler
- javac (javacTags.jar) - and javap utility (javapTags.jar)

about:blank

55 International Journal of Computer and Systems Engineering Volume 1 Issue 1,

 2020

• A Report Card which provides details of the features supported (fully, partially, or not).

• A Compiler Changes document which discusses the changes made to the compiler, the compiled
.class file, and the javap utility.

• The modified source code for the compiler and javap.

• A series of test applications.

See the Appendix for more details.

XII TRANSITION

Any adoption of the tags proposed here will be difficult since the transition must proceed in a bottom-up fashion. For
example, if writing a new tagged application with a read-only method which calls the size() method on a standard
java.util.LinkedList, the compile will fail since size() will not be tagged as :R.

Also, some libraries which are re-factored to fully incorporate tags will migrate some variables which were previously
private – with a getter and setter – and these will become public with :RW tags and drop the getter method.

The transition might be supported by some utilities and compile-time options and annotations.

HH. The JavaTag Utility
A standalone utility which will process compiled Classes or libraries, analyze the compiled code, and produce output
Classes/libraries with any tags which can be deduced. It will determine the most restrictive possible tags for a source
which does not specify any tags, and should generate an error if some tags are present.

This will allow existing libraries to be reprocessed to produce tagged output Classes. However, wherever possible
the source should be updated because the tags are important documentation for the users and maintainers of the
library.

The most important result will be the detection (and tagging) of read-only methods. In existing code, most variables
will be private with a getter method, and these will be identified as read-only. (And may well produce some surprises!)
Only an R tag will ever be inferred for a method. Inferring a T (transient) tag may produce erroneous results. For
example, in the java.util.Date Class all variables are listed as transient so the setTime(….) method would be inferred to
be immutable (T) if allowed.

Processing all of the standard Java libraries, and many popular 3rd party libraries (e.g. apache.commons) through this
utility should provide a basis to support the development of tagged applications. For example, the size() method of
LinkedList is expected to be tagged as read-only (and lead to some astonishment if it is not!).

II. Compilation Options, Annotations
The compiler will verify any specifications present in the source and generate warnings and errors as needed.

Several options are envisioned for the compiler – especially during any transition when some source code has been
tagged but must interface to untagged modules or libraries. In some cases, these may be specified as either a command
line option or an annotation in the source – for example:

• ignoreTags – ignore all tags in the source and compile as before (or assume that all tags are WW).

• inferTags – implement the logic from the JavaTag utility dynamically at compile time (most likely
when loading a Class from an untagged library).

• tags(class.<name>:xx:xx) – infer that the named variable (or method) should be compiled as-if the
given tags were present.

XIII FUTURE RESEARCH

JJ. Migrate to recent JDK
The proof of concept implementation is based on Java 8. This needs to be migrated at least to JDK 11 (the current

LTS release), JDK 14 (current release), or JDK 17 (the next LTS release, planned for September 2021).

56 International Journal of Computer and Systems Engineering Volume 1 Issue 1,

 2020

KK. Implement a Significant Application
Once migrated to a recent version of the JDK, use tags for the implementation of a non-trivial project and report

on the experience. This might well be the compiler itself.

LL. Change the Default
The current WW default enables the correct compilation of existing source which is un-tagged. Once most source has
been upgraded to use R/W tags, changing the default (either intrinsically or by compiler options) could be:

• Default to RR – so that only W (mutable) tags need to be specified.

• Default to P – which essentially has Java operate as a Functional Programming language.

MM. Referentially Transparent Methods
This would define a tag to specify that if a given method is called with the same parameter values it will always return
the same value. (Most mathematical functions – e.g. Math.sqrt(x) – are referentially transparent.) (There are numerous
discussions in the Functional Programming literature [1].)

This can be a major performance improvement since the result of an expensive operation can be cached once
computed the first time – e.g. compute the value of Pi to 999 decimal digits. It may also allow the compiler to perform
additional optimizations – e.g. Math.sqrt(x) inside a loop where ‘x’ is invariant may be moved outside the loop if known
to be referentially transparent.

It is expected that this tag would be a declaration by the developer since it may not be possible for the compiler to
verify referential integrity for an arbitrary method.

NN. Uniform Access Principle, Property Logic
A longstanding shortcoming of Java is that if during the refactoring of a Class it is necessary to change a variable from
public access to private, and add a getter and setter to manage access (or vice-versa), this is a breaking change to the
API of the Class.

This will become more of a problem using tags since many variables which would previously be defined as private
with a getter/setter, will now be declared as public with an RW tag. Any future refactoring then has an increased chance
of a breaking change.

Merging the uniform access principle introduced in [11] and the property concept within Java would be an elegant
solution to this issue, and a worthwhile addition independently, but is beyond the scope of this discussion.

OO. Enhanced ClassLoader
Determine if it is possible to enhance the ClassLoader to detect any RHS tag violation during the loading of a Class. Even
if possible, this might prove to be prohibitively expensive, and might be controlled by a JVM setting.

PP. Verify Transient
Verify if a method which may modify transient variables can safely allow a Pure determination – primarily considering
cache coherence issues in a multi-processor context.

XIV CONCLUSION

This proposal merges the concept of immutability into the most widely used object-oriented language. Overall,
these changes are extensive, and implementation of all particulars may not be possible in the real world –
especially since some may represent breaking changes to existing code. Summarizing some of the major topics – in
order of importance:

QQ. Tags on Types
This (especially the basic R/W tags), in the view of the author, is the most important contribution of this paper. It

allows a Class or method to expose a reference to an instance of a Class, but require read-only access to that

instance (through that reference). This eliminates the requirement that instances be cloned in order to provide

57 International Journal of Computer and Systems Engineering Volume 1 Issue 1,

 2020

safe access, which improves performance, reduces code complexity, and makes this critical constraint visible to

any user.

Returning Date:RW from a method also implies that the owner of the instance may modify the value in the future,
Date:RR implies that there will not be any modification by the owner, and Date:WR implies that the owner is passing
control of the target instance to the caller. Note, however, that these implications are not guaranteed by the compiler
(although returning Date:P does include a guarantee).

This is especially important since the concept of cumulative immutability allows a single reference to impose
immutable access to a large structure containing thousands of instances – for example the HTMLNode:RR rootNode
discussed previously.

It also allows forcing immutablility on an instance of a Class which is normally mutable – without requiring redundant
implementations of the Class or the use of wrappers (which will usually throw exceptions at runtime instead of raising
an error during compilation).

RR. Tags on Methods
Tagging a method as read-only (R) is necessary in order to support RR tags on types, allows the compiler to validate

this important requirement, and provides important information to any developer invoking that method. The ? tag

is necessary in many instances to force treatment of a method as immutable (especially for JNI methods).

SS. Transfer of Ownership
This is intended to support a couple of important edge cases, but is not intrinsic to the most critical features of this

proposal. It is intended to cleanly support the use of factory methods and the common situation where a caller

instantiates an instance but then intends to immediately pass control of this instance to another Class. For

example, creating a Message instance so that it can be passed to the Message.sendMessage(…) method.

TT. Tags on Variables
These are provided for completeness, to allow for the reduction of boilerplate code, and to provide a more

descriptive API for any user (or maintainer) of a Class.

However, these could be eliminated, and rely on the current mechanism of private variables and getters/setters used
to control access, without damage to the primary benefit of Tags on Types.

UU. Right Hand Side Tags
These are not strictly necessary, but do provide a way to detect that the implied contract of an API has been broken.
For example, invoking a heavily used method which was previously read-only but has been changed and is now
mutating, or is now synchronized, may have a drastic performance implication in a heavily concurrent application. RHS
tags detect the problem during compilation instead of production.

VV. Class/Interface Tags
Also not strictly necessary, but provide any reader an overview of the structure of the Class/Interface and allow the
compiler to detect implementation errors (especially during future maintenance cycles). They are most useful to
declare that static methods and/or instances of a Class are designed to be immutable – [P, *] [P, *].

WW. Pure Instances
This is the most problematic suggestion, especially the JVM changes which would be required to support Pure at
Runtime and changes to java.lang.Object.

The benefits would be primarily runtime improvements derived from reduced synchronization/coherence overhead,
but require additional research and would probably vary widely between different applications.

58 International Journal of Computer and Systems Engineering Volume 1 Issue 1,

 2020

APPENDIX

A Java 8 compiler was modified as a Proof of Concept for this proposal. This also involved adding information to the
compiled .class file, and re-parsing this information when the Class is re-loaded by the compiler – for example, tagged
Class A invokes tagged Class B. The javap utility was also modified in order to display the modified .class files.

XX. General Notes
• These modifications to the Java 1.8 compiler should be considered fragile. In particular, the level of

testing is marginal.

• See the companion Compiler Changes 0.1 document for details about how the compiler was
modified to support the R/W tags, and the tests applied.

• Note, as discussed in Compiler Changes, that most R/W tag logic is enforced at compile time and the
output *.class files should execute on the existing JVM. The Pure at Runtime concepts will require
JVM enhancements.

YY. Features Supported
The features supported by this version of the compiler are listed generally in the order in which they are discussed

in this document. An overall letter grade is provided along with further discussion as needed:

A Fully supported.

B Partially supported. All appearances should be parsed correctly, but not all semantic rules are applied.

C Parsed and ignored. Tags in the source should be parsed without error, but no semantic logic is implemented.

D Unsupported. Tags in the source will usually result in a compile-time error.

The following table is the Report Card of the support of these proposed features as of this document. A current

version is present on the shared drive with the compiler.

59 International Journal of Computer and Systems Engineering Volume 1 Issue 1,

 2020

Topic Grade Comments

Variables A

Variable Assignment Rules A

Type Specifications A

 D S and U tags

 D Exact R/W matches on RHS not supported (e.g. RXWX)

Pure Instances B Pure at Birth supported. Pure at Runtime not supported.

Arrays A

Array Assignments A

Generics A Generic declarations & reflect tags in .class file

 D Does not accept tags (e.g. <T:R>) and either verify (or supply) tags
at each instance of T in the code. All entries of T must be hand-
coded with the :R tags.

 C Does not determine R-Safe or generate a compile time error if a
generic which is not R-Safe is instantiated with a type which
specifies an :R or :P tag.

 B Verify R/W tags on parameters of calls & returns when a generic
type is involved

Generic Methods C

Type Assignment Rules A

Downcasts and Upcasts A

Methods A Verification of :R methods as read only (:F for now == R?)

 C Transfer of ownership not yet supported

 D Other tags beyond W, R, and F (will become R?)

Method Parameters B Varargs not yet supported

Method Overloading D

Method Overriding B Varargs not yet supported

Return Types A

 C Transfer of ownership

Scope Implications D

Lambdas C

Constructors B Does not support return tags after the method tag.

Class and Interface Tags D

Pure at Runtime D Requires JVM support

Concurrency Issues D Potential optimizations once R/W tags are fully supported.

Compilation Options C -ignoreTags compiler option supported.

Annotations D

JavaTag Utility D

60 International Journal of Computer and Systems Engineering Volume 1 Issue 1,

 2020

ACKNOWLEDGEMENT

Dr Douglas Lyon at Fairfield University and John P Crowley at Bank of America reviewed early versions of this
manuscript and provided important suggestions.

RELATED WORK

Almost all of the Functional Programming languages embody, and are built on, the concepts of immutable objects
and read-only methods. The concepts here are an attempt to import many of these into Java as declarative
enhancements to the language. An immense body of work exists around this topic – instead of repeating this here,
some introductory references are included which in turn act as pointers to the main bodies of work [1].

Both the C and C++ languages include a const keyword to specify that references or methods are immutable [2].

Neither of these include the concept of outsiders versus owners as distinct environments, which limits the use of

const. (See the Related Work section in [3] for a more thorough explanation.)

ConstJava is a comprehensive attempt to apply the const keyword concepts to Java [3]. This paper also has an

extensive bibliography, and some experimental results from applying these concepts. [These same experiments

need to be carried out for the concepts presented here.]

[4] is a discussion of the shortcomings of several earlier attempts to add readonly to Java and also includes an

extensive bibliography.

Uniqueness and Reference Immutability for Safe Parallism is defined in[7], and inspired the concept of Pure at

Runtime.

REFERENCES

[JLS] The Java Language Specification (SE8) – https://docs.oracle.com/javase/specs/

[1] https://en.wikipedia.org/ wiki/Functional_programming

[2] The C++ Programming Language, special edition, 2000. Bjarne Stroustrup

[3] http://types.cs.washington.edu/ javari/constjava/ConstJava.pdf)

[4] http://www.jot.fm/issues/issue_2006_06/article1/

[5] https://en.wikipedia.org/wiki/Java_Modeling_Language

[6] Programming in Scala, 2nd Edition, Odersky, Spoon, Venners

[7] https://www.microsoft.com/en-us/research/publication/uniqueness-and-reference-immutability-for-safe-

parallelism/

[8] https://docs.oracle.com/ javase/tutorial/java/generics/index.html

[9] http://www.angelikalanger.com/ GenericsFAQ/FAQSections/TechnicalDetails.html

[10] https://www.rust-lang.org/ enUS/documentation.html)

[11] Object-Oriented Software Construction, Meyer

[12] C# 6.0 in a Nutshell, J Albahari and B Albahari

[13] Delphi 2 Developer’s Guide, 2nd Edition, Pacheco and Teixeira

John D Crowley BS Physics/Math, Boston College, MS and PhD Computer Science, University of Pennsylvania.

40+ years of application architecture and development, with over 2M lines of code in multiple languages. Multiple startups.

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

	Declarative Immutability in Java
	Recommended Citation

	mapRW

