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ABSTRACT

Bluegill sunfish Lepomis macrochirus exhibit intraspecific var-
iation in their morphology and swimming performance based
on habitat. The pelagic form has a relatively streamlined, fu-
siform body shape associated with greater steady-state swim-
ming speed and energy economy. In contrast, littoral bluegill
have deeper bodies with fins located farther from their center
of mass to enhance maneuverability among littoral vegetation.
Deeper body shapes have been associated with increased fast-
start performance to escape predators or capture prey. We hy-
pothesized that littoral bluegill, which have a deeper body
shape, would exhibit greater fast-start performance than pelagic
bluegill. A total of 29 bluegill (16 littoral, 13 pelagic) were
caught by hook and line, and their fast-start performance was
analyzed from high-speed video recordings. Body shape appears
to be a poor predictor of fast-start performance. Contrary to
our expectations, pelagic bluegill had a significantly higher peak
velocity, peak acceleration, and angular velocity compared to
littoral bluegill. Pelagic bluegill living among larger predators
and foraging on mobile prey may be exposed to selection pres-
sures that favor increased fast-start performance. Integrated
studies of internal morphology and physiology are needed to
fully understand the relationship between morphology and per-
formance in this population.

Introduction

Many fish species have polyphenic populations in which mor-
phological divergence has been linked to diversifying selection

constrained by performance trade-offs (Schluter 1994; Rob-
inson et al. 1996; Robinson 2000; Svänback and Eklöv 2003;
Bolnick and Lau 2008). Freshwater populations consistently
diverge into littoral and pelagic ecomorphs that differ in for-
aging behavior, diet, and external morphology (Mittelbach
1981; Ehlinger and Wilson 1988; Ehlinger 1990; Schluter 1994;
Yonekura et al. 2002; Jastrebski and Robinson 2004; Parsons
and Robinson 2006, 2007; Bolnick and Lau 2008; Bhagat et al.
2011; Gerry et al. 2011). Morphological differences between
littoral and pelagic fish have been linked to potential perfor-
mance differences in feeding or locomotion, largely on the basis
of broader interspecific comparisons. Littoral forms are typi-
cally deeper bodied and have larger fins that are located rela-
tively farther from their body center of mass (COM), which
are features that are associated with enhanced performance
during unsteady swimming behaviors, include turning maneu-
vers and fast-starts to avoid predators or capture prey (Webb
1984; Walker 1997; Blake 2004; Langerhans and Reznick 2010;
Gerry et al. 2011; Ellerby and Gerry 2011). Pelagic forms typ-
ically have more fusiform body shapes that likely incur less
drag, which facilitates sustained swimming at low energetic cost
(Webb 1984; Walker 1997; Domenici 2003; Gerry et al. 2011;
Ellerby and Gerry 2011). Phenotypic features associated with
steady, economical swimming appear incompatible with effec-
tive unsteady swimming and vice versa, which may create a
trade-off between sustained and unsteady swimming perfor-
mance between fish from different habitats. These potential
trade-offs within fish populations have largely been inferred
from external morphology; however, recent empirical evidence
has supported this view. Within a polyphenic bluegill sunfish
population, a trade-off is present between energy economy and
speed during steady swimming and maneuverability around
obstacles (Ellerby and Gerry 2011).

Maneuverability represents one aspect of a wide repertoire
of unsteady swimming behaviors that encompass both the abil-
ity of a fish to traverse a complex physical environment and
fast-starts, which are rapid accelerations of the body to evade
predators or capture prey. Fast-starts are an important com-
ponent of organismal fitness, because fish that exhibit faster
starts are better able to evade predators (Walker et al. 2005;
Blob et al. 2010). Fast-start performance has been coupled with
particular aspects of body shape. An increased depth along the
length of the body is associated with the effective transfer of
momentum to the water during the high-amplitude bending
of the body axis that is characteristic of fast-starts (Weihs 1973;
Webb 1978), and selection pressures imposed by predation may
favor fish with deeper bodies (Domenici et al. 2008; Langerhans
2009; Blob et al. 2010). In bluegill sunfish, the deep body profile
is augmented by a deep caudal and large dorsal and anal fins

mailto:sgerry@fairfield.edu
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Figure 1. A, Relationship between body depth and length for littoral (open circles) and pelagic (filled circles) bluegill sunfish. Data are fitted
with linear regressions. Littoral and pelagic data sets are fitted with dashed and solid lines, respectively. Thicker lines are fitted to data points
for fish from this study only. B, Frequency distribution of relative body depths (as a proportion of body length) of pelagic and littoral fish.
Lines show lognormal curves fitted to the distributions. Data include fish from this study and from Gerry et al. (2011).

that contribute to thrust production (Tytell and Lauder 2008).
Polyphenic sunfish populations in which body and fin shape
vary in respect to habitat provide an opportunity to investigate
the links between body shape and fast-start performance with-
out the effects of phylogenetic distance that complicate inter-
specific comparisons of morphology and performance (Garland
et al. 2005).

We quantified fast-start performance in a population of
polyphenic bluegill sunfish Lepomis macrochirus Mitchill that
are known to differ in their external morphology (Gerry et al.
2011), steady swimming performance, energy economy, and
maneuverability (Ellerby and Gerry 2011). On the basis that
littoral bluegill have deeper body profiles than their pelagic
counterparts (fig. 1; Gerry et al. 2011), we hypothesized that
littoral fish would exhibit higher velocities and accelerations
during fast-starts and that a steady-versus-unsteady swimming
performance trade-off would exist in which the enhanced
steady swimming performance of the pelagic form would be
associated with reduced fast-start performance.

Material and Methods

Bluegill sunfish Lepomis macrochirus were caught by hook and
line in Lake Waban, Massachusetts, from June through July
2011. Pelagic fish were caught in open, macrophyte-free water
greater than 5 m in depth. Littoral fish were caught at water
depths of less than 1 m and in the presence of macrophyte
beds. Fish were transferred to the laboratory for overnight ac-
climation before performance testing and morphological mea-
surements. Experiments were performed at 22�C. This tem-
perature was similar to epilimnion temperatures in the lake
during the collection period. Mean masses (�SEM) of the 16

littoral (9 male, 7 female) and 13 pelagic (7 male, 6 female)
fish were and kg, respectively, and0.115 � 0.008 0.110 � 0.007
mean total lengths (�SEM) were and0.179 � 0.004 0.183 �

m, respectively. No significant differences in body length0.004
(t-test, , ) or mass (t-test, , )t p 0.76 P 1 0.05 t p 0.44 P 1 0.05
were detected between groups. All research was approved by
the Wellesley College Institutional Animal Care and Use
Committee.

Individual fish were transferred to a -cm tank with45 # 90
a water depth of 15 cm. Fast-starts were recorded from above
using an AOS X-PRI camera (AOS Technologies, Baden Daet-
twil, Switzerland) at a frame rate of 500 Hz and resolution of

pixels ( ). Fish were startled by1,024 # 800 1 pixel p 0.6 mm
tapping the bottom of the tank with a length of PVC pipe. To
minimize performance variability due to inconsistency of the
stimulus, the tank was always tapped directly in front of the
snout of the fish.

Several replicates may be required to arrive at reasonable
estimates of maximal performance (Adolph and Pickering
2008); therefore, fish were tested in multiple trials, and the best
performances were compiled for analysis. Preliminary analyses
based on up to 10 consecutive trials, with 3 min rest between
trials, showed that 5 replicates per individual were sufficient to
yield performance measures that were asymptotically approach-
ing a maximal value without producing a decrease in perfor-
mance over time as a result of fatigue or familiarity with the
stimulus.

Video sequences were downloaded to a personal computer
using AOS Digital Imaging software. The COM of bluegill sun-
fish is located approximately 40% of total body length from
the snout when the fish is in a straight position (Tytell and
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Lauder 2008; Gerry et al. 2011). This location on the midline
and the snout of each fish were tracked using Image J. Although
typically taken as an indicator of COM position during fast-
starts for tracking purposes (Webb 1978; Domenici and Blake
1997), the true COM does shift from the straight body COM
location during body bending (Wakeling 2006). Position data
were smoothed using a smoothing spline interpolation in the
application Igor Pro (ver. 6.2, Wavemetrics, Lake Oswego, OR).
This method is similar to the cubic spline algorithm recom-
mended by Walker (1998) for calculating velocities and accel-
erations from position data. The level of smoothing is dictated
by the standard deviation of the data. Smoothed COM position
data were differentiated to obtain COM velocity, and velocity
was differentiated to obtain COM acceleration. The COM and
snout position data were used to calculate the heading of the
fish. The body axis between the COM and snout is inflexible,
and the vector between these two points indicates fish heading.
The heading angle of the fish relative to the Y-direction (v�)
was calculated as v� , where dx and dy

�1p tan (d /d )(360/2p)x y

are the distances between the COM and snout in the X and Y
directions. Angle data were smoothed using a spline interpo-
lation, as for the position data, and were differentiated to give
a turning rate in degrees per second. Fast-starts are typically
divided into two kinematic phases (reviewed in Domenici and
Blake 1997; Wakeling 2006). Phase 1 consists of the initial C-
bend, and phase 2 consists of the subsequent reverse tail stroke.
These can be defined on the basis of snout angular velocity.
Phase 1 consists of an initial velocity peak, decreasing tran-
siently to 0 at the end of phase 1 before a second angular velocity
peak of opposite sign associated with phase 2, again decreasing
to 0 at the completion of this phase (Domenici and Blake 1997;
Tytell and Lauder 2008). We report escape angle, the total angle
turned by the fish during phases 1 and 2, peak COM velocity
(m s�1), peak COM acceleration (m s�2), peak angular velocity
(degrees s�1), and the total combined distance moved by the
COM during phases 1 and 2 (m).

After the experimental trials, each fish was lightly anesthe-
tized using tricaine methane sulphonate (MS222, 75 mg L�1,
buffered with NaOH), weighed, and photographed (using a
Canon Powershot S51S mounted on a tripod) in left lateral
and frontal views for morphometric analysis. Morphological
variables were measured using Image J, following Gerry et al.
(2011), and included total length, body depth, body width, body
lateral area, and areas of the spiny dorsal, soft dorsal, anal, and
caudal fins. These were chosen because of their potential func-
tional association with fast-start performance (Weihs 1973; Ty-
tell and Lauder 2008). For additional analyses, body depth and
width were expressed as proportions of body length, and areas
were expressed relative to body mass to the two-thirds power.

Statistical Analyses

Statistical analyses, with the exception of the escape angle data,
were performed using SPSS, version 18. Data were tested for
normality using a Kolmogorov-Smirnov test ( ) and Le-P ! 0.05
vene’s equality of error variances test ( ). Data distri-P ! 0.05

butions did not differ significantly from normality, and no
differences in variance were detected between samples.
ANCOVA was used to test for differences in body depth be-
tween groups (body length as a covariate) using the general
linear model function in SPSS. If a performance variable cor-
related with body size (angular velocity correlated with body
length, Pearson, ), ANCOVA with the body length asP ! 0.05
a covariate and habitat type as a fixed factor was used to test
for performance differences between groups. If there was no
correlation between performance and size (COM acceleration,
COM velocity, and distance moved), then ANOVA with habitat
type as a fixed factor was used to test for performance differ-
ences. No performance differences were detected with respect
to sex, so this was not included as a factor in the general linear
models, although this may be associated with a lack of statistical
power concerning the relative sample sizes of males versus fe-
males within each habitat group.

Principal components analysis (PCA) was used to extract a
reduced number of components that described the variation
in the morphological data. The spiny dorsal fin area, frontal
area, and body width variables did not meet the Kaiser-Meyer-
Olkin (KMO) requirements for sampling adequacy (scores
!0.5) and were removed from the analysis, and we retained the
relative areas of the body in lateral view and the anal, soft dorsal,
and caudal fins and the relative body depth. These met the
KMO requirements, and Bartlett’s test of sphericity (P p

) further indicated that the data were suitable for factor0.002
analysis. Kaiser’s rule was applied, retaining factors with ei-
genvalues greater than 1, confirmed by inspection of the scree
plot. Varimax orthogonal rotation was applied to the compo-
nent matrix. Although necessarily producing uncorrelated com-
ponents and simplifying data interpretation, imposition of or-
thogonality can distort the component scores (Grice 2001). To
check for this, an oblique rotation was also applied, but a similar
matrix structure was obtained.

To account for the use of multiple comparisons, the
experiment-wise error rate was adjusted using a sequentially
rejective multiple-test procedure applying Ryan’s Q (Ryan
1960). Cohen’s d (Cohen 1988) was calculated as an indicator
of effect size, where ml and mp were thed p (m � m )/jl p pooled

mean values for the littoral and pelagic groups, respectively,
and jpooled was the root mean square of their standard devia-
tions. The standard deviation of Cohen’s d, an indicator of the
robustness of the effect size estimate, was calculated as

2n � n d n � nl p l p� � , (1)[ ]( )n n 2(n � n � 2) n � n � 2l p l p l p

where nl and np were the numbers of littoral and pelagic fish,
respectively (Cooper and Hedges 1994). Effect sizes are clas-
sified as small ( ), medium ( ), and large0.2 ≤ d ! 0.5 0.5 ≤ d ! 0.8
( ; Cohen 1988).d ≥ 0.8

Escape angle data were analyzed using a circular statistics
package (Oriana, ver. 3.21, Kovach Computing Services, Pent-
raeth). Multiple pairwise comparisons based on the Mardia-
Watson-Wheeler test were used to test for interindividual var-
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Figure 2. Comparison of fast-start performance variables, including (A) peak center of mass (COM) velocity, (B) peak COM acceleration, (C)
angular velocity, and (D) COM distance moved. Filled bars show pelagic ( ) and open bars show littoral ( ) bluegill. AsterisksN p 13 N p 16
indicate statistical significance using a sequentially rejective multiple test procedure applying Ryan’s Q.

iation in escape angle. This is a nonparametric test for
differences between samples of circularly distributed data. None
were detected, and the angle data within the littoral and pelagic
groups were pooled for additional analyses. A binomial test was
used to determine whether left : right directional preferences
differed from a ratio. No directional preference was de-1 : 1
tected in either group, and data from left and right turns were
pooled for additional analysis. Pooled trajectory distributions
for littoral and pelagic fish were compared with both uniform
and circular normal distributions using Watson’s U2 test. Com-
parisons between the littoral and pelagic angle distributions
were made using a Mardia-Watson-Wheeler test. Inspection of
the trajectory distributions suggested the presence of multiple
peaks. A two-step cluster analysis procedure (PASW, ver. 18.0,
IBM, New York) was used to determine whether the patterns
were similar in both habitats. The clustering algorithm identifies
normally distributed clusters within the overall frequency dis-
tribution. The number of clusters is not assumed a priori. A
model is chosen on the basis of an information criterion that
balances model fit and model complexity, the aim being to
maximize closeness of fit while limiting the number of param-
eters in the model. A number of such criteria are available. We
applied the Schwarz Information Criterion (also known as the
Bayesian Information Criterion; Schwarz 1978). This is con-
servative in terms of imposing a relatively large penalty for
increased model complexity and minimizes the potential for

overfitting, which is the selection of excessively complex models
(Sneek 1984; Koehler and Murphree 1988).

Results

Bluegill sunfish show intraspecific variation in fast-start per-
formance. Pelagic individuals had a significantly greater peak
COM velocity (ANOVA, , , Cohen’sF p 15.8 P ! 0.001 d p1, 28

; fig. 2A) and peak COM acceleration (ANOVA,�1.5 � 0.4
, , Cohen’s ; fig. 2B). PelagicF p 7.4 P p 0.01 d p �1.0 � 0.41, 28

bluegill also had a greater turning rate than littoral bluegill
(ANCOVA, , , Cohen’s ;F p 11.0 P p 0.003 d p �0.9 � 0.41, 28

fig. 2C). No difference was detected in the distance moved
between the pelagic and littoral groups (ANCOVA, F p1, 28

, , Cohen’s ; fig. 2D), although the3.38 P p 0.07 d p �0.7 � 0.4
magnitude of Cohen’s d suggests that there may be an effect
associated with habitat type.

There were significant differences in body depth between
littoral and pelagic fish for a collated data set incorporating
morphological data from earlier studies (Gerry et al. 2011) and
for the fish from this study (fig. 1; ANCOVA, ,F p 29.11, 111

, all data; ANCOVA, , , fish fromP ! 0.001 F p 13.0 P ! 0.0011, 28

this study). Relative body depth was weakly associated with
peak swimming velocity in both groups of fish (fig. 3A;
Pearson’s ) and significantly correlated with peak accel-r 1 0.3
eration in pelagic bluegill (fig. 3B; Pearson’s , ).r 1 0.5 P ! 0.05
Body depth was not associated with peak angular velocity (fig.
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Figure 3. Relationship between relative body depth to (A) peak center of mass (COM) velocity, (B) peak COM acceleration, (C) peak angular
velocity, and (D) COM distance moved. Filled circles show pelagic ( ) and open circles show littoral ( ) bluegill. Lines representN p 13 N p 16
Pearson product-moment correlation coefficients of 0.3 or greater, which indicates medium to large effect sizes (Cohen 1988).

Table 1: Component scores resulting from reduction of
the morphological data by principal component (PC)
analysis

Morphological
variable PC1, fin area PC2, body shape

Caudal fin area .72 �.05
Soft dorsal fin area .83 �.01
Anal fin area .82 .39
Relative body depth .15 .80
Lateral body area .05 �.80

Note. A varimax orthogonal rotation was applied to the scores. The

highest scores for each component are highlighted in bold.

3C) or distance moved (fig. 3D). PCA identified two compo-
nents that describe 66% of the variation in the morphological
data from this study. Principal component 1 (PC1) accounted
for 41.9% of the variation, and fin areas all loaded heavily on
this component (table 1). PC2 accounted for an additional
24.4% of the variation. Body area and body depth crossloaded
on this component (table 1). A high score for PC1 is associated
with larger relative size of the fins that are associated with thrust
production during fast-starts in bluegill (Tytell and Lauder
2008). A high score for PC2 is associated with a deeper body
shape and lower relative lateral body area. This is counterin-
tuitive, because all other things being equal, increased body
depth in relation to length should be associated with increased
lateral area. In this case, area is expressed relative to mass to
the two-thirds power, not as a function of length, so body shape
and area are not necessarily coupled. The component scores
for individual fish are plotted in figure 4. The distribution of
component scores for the littoral and pelagic fish confirm pre-
vious observations of differences in body shape, with littoral
fish being deeper bodied overall (higher scores on PC2). Pelagic

fish score higher on PC1, which indicates greater relative fin
areas. Correlations between performance and the PC scores for
both components are shown in table 2. There was a strong
negative relationship between peak angular velocity and PC1
in both the pelagic and littoral fish. Acceleration had a strong
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Figure 4. Plot of component scores generated by principal components
analysis of the morphological data. High scores for component 1 were
associated with increasing relative area of the caudal, anal, and soft
dorsal fins. High scores for component 2 were associated with increas-
ing relative body depth and decreasing relative lateral body area. Data
for littoral fish are shown by open symbols bounded by a dashed line,
and data for pelagic fish are shown by filled symbols bounded by a
solid line.

positive association with PC2 in the pelagic fish but not in the
littoral fish.

The proportion of observed left versus right turns in response
to the stimulus did not differ significantly from a ratio1 : 1
for either littoral (Binomial test, observed proportions 0.45
right, 0.55 left, ) or pelagic (Binomial test, observedP p 0.526
proportions 0.39 right, 0.61 left, ) fish. The escapeP p 0.117
angles for each group were neither uniformly nor normally
distributed (Watson’s U2-test, ). Two clusters were iden-P ! 0.05
tified within the frequency distribution for fish from both hab-
itats (fig. 5). All clusters had a circular normal distribution
(Watson’s U2-test, ). No significant differences wereP 1 0.05
detected in the mean values of equivalent clusters across groups
(Mardia-Watson-Wheeler, ).P 1 0.05

Discussion

Fast-start performance has been compared between species
(Webb 1978) and across populations within species (Taylor and
McPhail 1985, 1986; Ghalambor et al. 2004; Domenici et al.
2008); however, this is, to our knowledge, the first study to
examine variation between habitat-specific forms within a sin-
gle population. The majority of these studies acknowledge a
trade-off between unsteady versus steady swimming correlated
with body morphology. Fishes that exhibit superior prolonged
swimming behaviors have fusiform, streamlined bodies to re-
duce drag (Taylor and McPhail 1985, 1986; Blob et al. 2010;
Langerhans and Reznick 2010). A deeper body shape and large
lateral area should enable effective transfer of momentum to
the water during the rapid body bending generated during the
fast-start (Weihs 1973; Webb 1978; Tytell and Lauder 2008),
and empirical studies have found improved fast-start perfor-

mance or evasion of predators in deeper-bodied fish (Domenici
et al. 2008; Langerhans 2009; Blob et al. 2010).

Our findings concerning bluegill fast-start performance are
contrary to our initial predictions based on body shape. Littoral
bluegill have deeper bodies than pelagic bluegill (fig. 1; Ellerby
and Gerry 2011; Gerry et al. 2011), yet this characteristic does
not translate into faster starts compared with those of the more
fusiform, pelagic bluegill (fig. 2). Although trade-offs in per-
formance between steady and unsteady swimming are present
in this population, they apply only to certain aspects of these
behavioral categories. The pelagic form is effective and eco-
nomical at steady swimming and less maneuverable than the
littoral form (Ellerby and Gerry 2011), yet it is more effective
at accelerating during fast-starts (this study).

The relationships between body and fin shape, as summa-
rized by principal component scores, and fast-start perfor-
mance are generally weak in polyphenic bluegill (table 2). The
main exception is the strong negative association between PC1
and peak angular velocity in both groups of fish (table 2). PC1
is associated with fin area, specifically with that of the caudal,
anal, and soft dorsal fins. These all contribute to momentum
transfer to the water during the fast-start (Tytell and Lauder
2008). By effectively increasing the lateral surface area for mo-
mentum transfer, large fins may limit the rate of body rotation.
PC2, a descriptor of body shape and lateral body area, is pos-
itively associated with COM acceleration, but only in pelagic
fish (table 2). Higher PC2 scores are associated with a deeper
body shape. This fits with expectations based on previous work,
but it applies only to one form type, not across the entire
population. This finding has potential implications for studies
of locomotor performance in many species, because habitat-
related variation in performance and/or phenotype, if unac-
counted for, could obscure or distort phenotype-function
relationships.

Although earlier work has focused on the potential influences
of body shape on fast-start performance (Weihs 1973; Webb
1984), in a complex behavior that is influenced by a wide range
of both external and internal morphological and physiological
factors, there are many ways in which performance can be
decoupled from external morphology (table 1). For example,
the morphology and/or contractile properties of the myotomal
muscle that acts as the power source also determine perfor-
mance, and when deeper body shapes have been associated
with increased fast-start performance, differences in myotomal
muscle mass have also been demonstrated (Webb 1978; Do-
menici et al. 2008). This study and related work on morpho-
logical and performance variation within and between habitats
in the study population show that this is a promising system
for examining relationships between morphophysiological fac-
tors and performance. However, precise resolution of the in-
terrelationships between phenotype and function will require
detailed, highly integrated measures of external and internal
morphology; physiological factors, such as muscle contractile
properties; and multiple aspects of steady and unsteady swim-
ming performance made concurrently in the same group of
individuals.
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Table 2: Pearson product-moment correlation (PPMC) coefficients for
relationships between fast-start performance and body shape as summarized by
principal component (PC) analysis

PC1, thrust PC2, body shape

Variable
Littoral

(n p 16)
Pelagic

(n p 13)
Littoral

(n p 16)
Pelagic

(n p 13)

Peak COM velocity (m s�1) �.2 (.38) .3 (.32) �.3 (.20) .2 (.49)
Peak COM acceleration (m s�2) �.2 (.36) �.1 (.75) �.1 (.74) .8 (.001)
Angular velocity (� s�1) �.5 (.04) �.6 (.03) �.2 (.43) �.01 (.97)
Distance moved (m) �.2 (.54) .2 (.46) .1 (.67) .2 (.57)

Note. Cohen (1988) classified PPMCs of 0.1, 0.3, and 0.5 as representing small, medium, and large effect

sizes, respectively. P values are shown in parentheses. Bold type indicates statistical significance. COM p
center of mass.

Figure 5. Circular histograms showing the frequency distribution of escape angles for littoral and pelagic fish. Data are pooled across individuals.
Radial lines and arcs show the means and circular standard deviations of the escape angle clusters. The stimulus, indicated by an arrow, was
delivered directly in front of the fish at 0�. Data from left and right turns are pooled, because the ratio of left : right preference did not differ
significantly from , and no significant difference was detected by the angular distributions of left and right turns. The plots therefore show1 : 1
the magnitude of the change in trajectory, not direction. Littoral clusters were at (32) and (30), pelagic at68.8� � 23.6� 141.1� � 33.0�

(34) and (25). Data are shown as the mean � circular standard deviation. The total number of observations in82.5� � 21.9� 153.3� � 23.8�
each cluster is shown in parentheses.

Our findings are, in part, supported by a “predator-mediated
selection” hypothesis: fish from high-predation environments
should be exposed to selection pressures that favor fast-start
performance (Ghalambor et al. 2004; Domenici et al. 2008;
Langerhans 2009; Blob et al. 2010). Fish species that inhabit
Lake Waban include pumpkinseed sunfish, largemouth bass,
black crappie, chain pickerel, and yellow perch. Of these, large-
mouth bass are a primary predator of bluegill (Werner et al.
1983) and are often caught while fishing in pelagic areas (D.
J. Ellerby and S. P. Gerry, personal observation). In the open
water, pelagic fish are also exposed to increased predation from
birds. Cormorants frequent the lake, and sunfish can form a
majority of the cormorant diet in freshwater habitats (Brugger
1993; Campo et al. 1993; Glahn et al. 1995). The importance
of fast-starts for predator evasion may also depend on envi-
ronmental features. Fast-start performance may be of limited

significance for predator evasion in the complex physical en-
vironment created by dense vegetation. When exposed to pred-
atory bass in the presence of a simulated aquatic weed bed,
littoral bluegill evade predation by maneuvering rapidly
through that cover (Chipps et al. 2004). Under these circum-
stances, agility, which is provided by the high maneuverability
of the littoral form (Ellerby and Gerry 2011), may be more
important than raw power for predator avoidance. Differences
in foraging behavior may also be important factors in shaping
acceleration performance. Pelagic bluegill feed on free-
swimming zooplankton, and prey capture performance is dic-
tated not just by suction and flow at the mouth but by move-
ment of the whole body (reviewed in Higham 2007). The
phenotypic features associated with rapid accelerations for prey
capture may not be decoupled from those that favor fast-start
performance during predator avoidance.
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The processes that lead to the observed divergence in mor-
phology and performance are of considerable interest. Bluegill
construct their nests in the littoral habitat. Larvae and juveniles
of both forms hatch and reside among the vegetation until they
are large enough to avoid predation by largemouth bass
(Mittelbach and Osenberg 1993), at which point the pelagic
fish move to the open water. Behavioral and morphological
variation is already present in juvenile bluegill by the time they
reach 30–70 mm in length (Chipps et al. 2004). Specific in-
formation regarding the genetic factors and developmental pro-
cesses that underlie divergence in bluegill is lacking, but in other
sunfish species, a combination of genetic factors and pheno-
typic plasticity, largely in response to dietary differences, dic-
tates habitat-specific variation in morphology (Robinson and
Wilson 1996; Hegrenes 2001). It is not known whether the
scope and nature of the morphological and fast-start perfor-
mance differences detected in adults are already present in ju-
venile bluegill. Thus, the fast-start response needs to be com-
pared in juvenile bluegill to determine whether the performance
parameters of velocity and acceleration are stereotyped in youn-
ger individuals and whether the divergence shown by adults is
a consequence of phenotypic divergence later in development
or differential selection, in which poorly performing individuals
are removed from the pelagic environment by predation.

Despite significant differences in performance between
groups, there were no detectable differences in the escape angle
distributions (fig. 5). The escape angle is dictated by the timing
and magnitude of the myotomal muscle contractions that drive
body bending (Foreman and Eaton 1993). The initial C-bend
is primarily generated under the control of paired reticulospinal
Mauthner neurons and associated command neurons (reviewed
in Eaton et al. 2001; Korn and Faber 2005). The antagonistic
phase 2 contraction is likely under the control of a second
group of neurons (Foreman and Eaton 1993). Neural activity
in both groups therefore contributes to forming the final escape
angle. Both forms showed a bimodal trajectory distribution (fig.
5), with no preference for left versus right turns. The mean
values of the peaks are similar in both groups of fish. In practice,
this would create a pattern of response with four peaks within
the 360� distribution. Other fish species show a similar bimodal
angle magnitude distribution, with escape most successful from
150� to 180� (Walker et al. 2005). This bimodal distribution is
thought to either maximize the distance between the fish and
its predator or allow for sensory tracking of the predator before
a repeat attack (Domenici et al. 2011). The fish do not adopt
a “protean” response pattern (Driver and Humphries 1988),
in which the escape trajectory is random and completely un-
predictable (reviewed in Domenici et al. 2011), but the breadth
of the clusters creates considerable variation, with low pre-
dictability for the final trajectory. The lack of variation between
pelagic and littoral bluegill suggests that the underlying neural
control of the behavior does not differ but that the performance
difference lies in the effectiveness with which the movements
generated by the underlying neural activity are translated into
effective thrust production.

In conclusion, greater fast-start performance has been shown

in pelagic bluegill living in an open-water environment. This
was contrary to initial predictions based on body shape. Fast-
start performance can be directly linked to organismal fitness,
because fish that exhibit fast-starts decrease their risk of pre-
dation and may increase their prey capture. Although littoral
bluegill show decreased fast-start performance, they are able to
maneuver efficiently through the vegetation, which may be
more important for evading predators in a complex environ-
ment. Future studies of juvenile bluegill are needed to deter-
mine whether the divergence shown in fast-start performance
is present early in development or whether it arises from
habitat-specific environmental cues and/or differential selec-
tion. Additionally, integrative studies of internal morphology
and physiology are needed to fully reveal the interplay between
phenotypic and performance variation.
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