Fairfield University DigitalCommons@Fairfield **Physics Faculty Publications** **Physics Department** 1-1-2012 # Comment on 'Observation of a narrow structure in $1H(\gamma,K0S)X$ via interference with ϕ -meson production' M. Anghinolfi Angela Biselli Fairfield University, abiselli@fairfield.edu Follow this and additional works at: https://digitalcommons.fairfield.edu/physics-facultypubs Copyright American Physical Society Publisher final version available at http://prc.aps.org/pdf/ PRC/v86/i6/e069801 #### Peer Reviewed #### **Repository Citation** Anghinolfi, M. and Biselli, Angela, "Comment on 'Observation of a narrow structure in $1H(\gamma,K0S)X$ via interference with ϕ -meson production" (2012). *Physics Faculty Publications*. 32. https://digitalcommons.fairfield.edu/physics-facultypubs/32 #### Published Citation Anghinolfi, M., Ball, J., Baltzell, N. A., Battaglieri, M., Bedlinskiy, I., Bellis, M., et.al. "Comment on 'Observation of a narrow structure in $1H(\gamma,K0S)X$ via interference with ϕ -meson production". Phys. Rev. C 86, 069801 (2012). DOI: 10.1103/PhysRevC.86.069801 This item has been accepted for inclusion in DigitalCommons@Fairfield by an authorized administrator of DigitalCommons@Fairfield. It is brought to you by DigitalCommons@Fairfield with permission from the rights-holder(s) and is protected by copyright and/or related rights. You are free to use this item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses, you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. For more information, please contact digitalcommons@fairfield.edu. ### Comment on "Observation of a narrow structure in ${}^{1}H(\gamma,K_{S}^{0})X$ via interference with ϕ -meson production" ``` M. Anghinolfi, ¹⁸ J. Ball, ⁸ N. A. Baltzell, ^{1,29} M. Battaglieri, ¹⁸ I. Bedlinskiy, ²⁰ M. Bellis, ^{6,25} A. S. Biselli, ¹¹ C. Bookwalter, ¹³ S. Boiarinov, ^{20,30} P. Bosted, ³⁰ V. D. Burkert, ³⁰ D. S. Carman, ³⁰ A. Celentano, ¹⁸ S. Chandavar, ²⁴ P. L. Cole, ^{16,30} V. Crede, ¹³ S. Boiarinov, ^{20,30} P. Bosted, ³⁰ V. D. Burkert, ³⁰ D. S. Carman, ³⁰ A. Celentano, ¹⁸ S. Chandavar, ²⁴ P. L. Cole, ^{16,30} V. Crede, ¹³ R. De Vita, ¹⁸ E. De Sanctis, ¹⁷ B. Dey, ⁶ R. Dickson, ⁶ D. Doughty, ^{9,30} M. Dugger, ² R. Dupre, ¹ H. Egiyan, ^{30,35} A. El Alaoui, ¹ L. El Fassi, ¹ L. Elouadrhiri, ³⁰ P. Eugenio, ¹³ G. Fedotov, ²⁹ M. Y. Gabrielyan, ¹² M. Garcon, ⁸ G. P. Gilfoyle, ²⁷ K. L. Giovanetti, ²¹ F. X. Girod, ³⁰ J. T. Goetz, ³ E. Golovatch, ²⁸ M. Guidal, ¹⁹ L. Guo, ^{12,30} K. Hafidi, ¹ H. Hakobyan, ³² D. Heddle, ^{9,30} K. Hicks, ²⁴ M. Holtrop, ²³ D. G. Ireland, ³³ B. S. Ishkhanov, ²⁸ E. L. Isupov, ²⁸ H. S. Jo, ¹⁹ P. Khetarpal, ¹² A. Kim, ²² W. Kim, ²² V. Kubarovsky, ³⁰ S. V. Kuleshov, ^{20,32} H. Y. Lu, ⁶ I. J. D. MacGregor, ³³ N. Markov, ¹⁰ M. E. McCracken, ^{6,34} B. McKinnon, ³³ M. D. Mestayer, ³⁰ C. A. Meyer, ⁶ M. Mirazita, ¹⁷ V. Mokeev, ^{28,30} K. Moriya, ^{6*} B. Morrison, ² A. Ni, ²² S. Niccolai, ¹⁹ G. Niculescu, ^{21,24} I. Niculescu, ^{15,21,30} M. Osipenko, ¹⁸ A. I. Ostrovidov, ¹³ K. Park, ^{22,30} S. Park, ¹³ S. Anefalos Pereira, ¹⁷ S. Pisano, ¹⁷ O. Pogorelko, ²⁰ S. Pozdniakov, ²⁰ J. W. Price, ⁴ G. Ricco, ¹⁴ M. Ripani, ¹⁸ B. G. Ritchie, ² P. Rossi, ¹⁷ D. Schott, ¹² R. A. Schumacher, ⁶ E. Seder, ¹⁰ Y. G. Sharabian, ³⁰ E. S. Smith, ³⁰ D. I. Sober, ⁷ S. S. Stepanyan, ²² P. Stoler, ²⁶ W. Tang, ²⁴ M. Lingaro, ^{10,26,30} B. Vernarsky, ⁶ M. F. Vineyard, ^{27,31} D. P. Weygand, ³⁰ M. H. Wood, ^{5,29} N. Zachariou, ¹⁵ and B. Zhao³⁵ M. Ungaro, ^{10,26,30} B. Vernarsky, ⁶ M. F. Vineyard, ^{27,31} D. P. Weygand, ³⁰ M. H. Wood, ^{5,29} N. Zachariou, ¹⁵ and B. Zhao ³⁵ ¹Argonne National Laboratory, Argonne, Illinois 60439, USA ²Arizona State University, Tempe, Arizona 85287-1504, USA ³University of California at Los Angeles, Los Angeles, California 90095-1547, USA ⁴California State University, Dominguez Hills, Carson, California 90747, USA ⁵Canisius College, Buffalo, New York, USA ⁶Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA ⁷Catholic University of America, Washington, D.C. 20064, USA ⁸CEA, Centre de Saclay, Irfu/Service de Physique Nucléaire, 91191 Gif-sur-Yvette, France ⁹Christopher Newport University, Newport News, Virginia 23606, USA ¹⁰University of Connecticut, Storrs, Connecticut 06269, USA ¹¹Fairfield University, Fairfield, Connecticut 06824, USA ¹²Florida International University, Miami, Florida 33199, USA ¹³Florida State University, Tallahassee, Florida 32306, ISA ¹⁴Università di Genova, 16146 Genova, Italy ¹⁵The George Washington University, Washington, D.C. 20052, USA ¹⁶Idaho State University, Pocatello, Idaho 83209, USA ¹⁷INFN, Laboratori Nazionali di Frascati, 00044 Frascati, Italy ¹⁸INFN, Sezione di Genova, 16146 Genova, Italy ¹⁹Institut de Physique Nucléaire ORSAY, Orsay, France ²⁰Institute of Theoretical and Experimental Physics, Moscow, 117259, Russia ²¹ James Madison University, Harrisonburg, Virginia 22807, USA ²²Kyungpook National University, Daegu 702-701, Republic of Korea ²³University of New Hampshire, Durham, New Hampshire 03824-3568, USA ²⁴Ohio University, Athens, Ohio 45701, USA ²⁵Northern Illinois University, Dekalb, Illinois 60115, USA ²⁶Rensselaer Polytechnic Institute, Troy, New York 12180-3590, USA ²⁷University of Richmond, Richmond, Virginia 23173, USA ²⁸Skobeltsyn Nuclear Physics Institute at Moscow State University, 119899 Moscow, Russia ²⁹University of South Carolina, Columbia, South Carolina 29208, USA ³⁰Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA ³¹Union College, Schenectady, New York 12308, USA ³²Universidad Técnica Federico Santa María, Casilla 110-V Valparaíso, Chile ³³University of Glasgow, Glasgow G12 8QQ, United Kingdom ³⁴Washington & Jefferson College, Washington, Pennsylvania 15301, USA ³⁵College of William and Mary, Williamsburg, Virginia 23187-8795, USA ``` DOI: 10.1103/PhysRevC.86.069801 PACS number(s): 13.60.Rj, 14.40.-n, 24.85.+p, 25.20.Lj (Received 9 April 2012; published 6 December 2012) In Ref. [1], the authors claim to observe a narrow structure in the mass spectrum constructed from the (pK_L) system using data from the CLAS detector. The interpretation of this narrow structure given in Ref. [1] is as follows: "It may be due to the ^{*}Current address: Indiana University, Bloomington, IN 47405. photoproduction of the Θ^+ pentaquark or some unknown Σ^* resonance." The authors go on to say that "it is unlikely for the observed structure to be due to a Σ^* resonance." This analysis was reviewed by the CLAS Collaboration, following the established procedures for all CLAS papers, and did not receive approval. The purpose of this Comment is to explain the reasons why that analysis was not approved for publication. An extensive review of the analysis in Ref. [1] was carried out by two separate committees of the Hadron Spectroscopy Physics Working Group in the CLAS Collaboration. In both cases, the committees came to the same conclusion: The physics claims of Ref. [1] could not be supported. The reasons for this conclusion are manyfold, but a primary concern is the lack of justification for the kinematic cuts used in that analysis. The review committees reported that the narrow structure appears only within a specific range of values of the kinematic cuts. Here, the details are important (which cuts were varied and by how much) but this would require more space to document than a simple Comment will allow. We give only one example below but note that the CLAS committees conducted an extensive review of the sensitivity of the narrow structure to what they considered reasonable variations of the cuts [2]. As an example, the cut on the t_{Θ} variable (defined in Ref. [1]) was restricted to a small region of the total phase space $(-t_{\Theta} < 0.45 \text{ GeV}^2)$. Without this cut, the narrow structure is not statistically significant. By examining Fig. 8 of Ref. [1], one can see that the structure is not really visible in the top spectrum [Fig. 8(a)] and appears only in Fig. 8(c). When the cut value is increased by 20% ($-t_{\Theta} < 0.55$) as shown by Fig. 8(b), or decreased by 10% ($t_{\Theta} < 0.4$), as shown by Fig. 8(d), then the purported structure at a mass of 1.54 GeV is consistent in size with other fluctuations in those spectra. While the authors of Ref. [1] make an argument about why the t_{Θ} cut was necessary, the CLAS Collaboration was not convinced. For example, it is possible that an interference between the narrow structure and the background is dependent on the t_{Θ} variable, but this assumption is difficult to prove. The analysis of Ref. [1] did not provide any evidence of interference phases. It is not uncommon to use kinematic cuts to reduce background and, hence, improve the signal-to-background ratio for known particles, but other studies [3] have shown that one must be careful when applying kinematic cuts that can create spurious fluctuations. We could argue whether the kinematic cuts used in Ref. [1] are justified, but the fact remains that the CLAS Collaboration as a whole was not convinced that the narrow structure of Ref. [1] corresponds to a real physical entity. In the end, the validity of the narrow structure claimed by Ref. [1] will be determined by future experiments. If it is a physical resonance, as suggested by Ref. [1], then it should be reproducible. The evidence presented in Ref. [1] was not sufficient to convince the CLAS Collaboration of the physics conclusions of that analysis. ^[1] M. Amaryan *et al.*, Phys. Rev. C **85**, 035209 (2012). ^[2] E. Smith *et al.*, Report of the committee to review the ODU analysis of meson-baryon interference, version 3, CLAS-NOTE 2011-021 [https://misportal.jlab.org/ul/Physics/Hall-B/clas/]. ^[3] J. Klein and A. Roodman, Ann. Rev. Nucl. Part. Sci. 55, 141 (2005).