
Fairfield University Fairfield University

DigitalCommons@Fairfield DigitalCommons@Fairfield

Engineering Faculty Publications School of Engineering

2002

CentiJ: An RMI Code Generator CentiJ: An RMI Code Generator

Douglas A. Lyon
Fairfield University, dlyon@fairfield.edu

Follow this and additional works at: https://digitalcommons.fairfield.edu/engineering-facultypubs

Copyright 2002 Journal of Object Technology

Archived with permission from the copyright holder.

Peer Reviewed Peer Reviewed

Repository Citation Repository Citation
Lyon, Douglas A., "CentiJ: An RMI Code Generator" (2002). Engineering Faculty Publications. 36.
https://digitalcommons.fairfield.edu/engineering-facultypubs/36

Published Citation
Douglas A. Lyon,"CentiJ: An RMI Code Generator." Journal of Object Technology 1, no. 5 (2002): 117-148.

This item has been accepted for inclusion in DigitalCommons@Fairfield by an authorized administrator of
DigitalCommons@Fairfield. It is brought to you by DigitalCommons@Fairfield with permission from the rights-
holder(s) and is protected by copyright and/or related rights. You are free to use this item in any way that is You are free to use this item in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses, you need to obtain permitted by the copyright and related rights legislation that applies to your use. For other uses, you need to obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/or on the work itself.in the record and/or on the work itself. For more information, please contact digitalcommons@fairfield.edu.

http://www.fairfield.edu/
http://www.fairfield.edu/
https://digitalcommons.fairfield.edu/
https://digitalcommons.fairfield.edu/engineering-facultypubs
https://digitalcommons.fairfield.edu/schoolofengineering
https://digitalcommons.fairfield.edu/engineering-facultypubs?utm_source=digitalcommons.fairfield.edu%2Fengineering-facultypubs%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fairfield.edu/engineering-facultypubs/36?utm_source=digitalcommons.fairfield.edu%2Fengineering-facultypubs%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@fairfield.edu

JOURNAL OF OBJECT TECHNOLOGY
Published by ETH Zurich, Chair of Software Engineering ©JOT, 2002

Vol. 1, No. 5, November-December 2002

 CentiJ: An RMI Code Generator, in Journal of Object
Technology, vol. 1, no. 5, November-December 2002, pages 117-148.

CentiJ: An RMI Code Generator
Douglas Lyon, Fairfield University, Fairfield, U.S.A.

The Perfect bureaucrat is the man
who manages to make no decisions

and escapes all responsibility.

– Justin Brooks Atkinson

Summary
The CentiJ system synthesizes Java source code that funnels invocations through an
RMI (Remote Method Invocation) based transport layer for distributed computation. The
technique generates bridge pattern code (i.e., interfaces and proxies) that automate the
creation of virtual proxies for message forwarding.
We examine the tradeoffs between bridge implementations based on manual static
delegation, automatic static delegation, and dynamic proxy classes. Advantages of the
CentiJ technique include improved performance, type safety, transparency,
predictability, flexibility and reliability.
We then look at various methods for solving the disambiguation problem that arises
when delegates have conflicting method signatures. Disambiguation can be automatic,
semi-automatic or manual. CentiJ can automatically create a class that alters the
interface to the bridge (using the adapter pattern).

1 INTRODUCTION

Java technology supports distributed computing on heterogeneous networks via a
technology called RMI and CORBA [Lea] [Jennings]. To do this, RMI provides a
communication framework for distributed computation in a remote address space. RMI is
a de factor standard for communication between systems written in different languages
[Slominski]. Sorry to say, use of the RMI technology often requires significant
programmer effort and the writing of extra source code. The CentiJ project eases this
programmer burden.

CentiJ enables the remove invocation of existing, (i.e., legacy) code, without
changing it. We funnel the communications through a bridge that is remotely invoked.

http://www.jot.fm
http://www.jot.fm/issues/issue_2002_11/article2

 CENTIJ: AN RMI CODE GENERATOR

118 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 5

All the communications are encapsulated in the CentiJ generated code so that the
CentiJ programmer does not need to modify the code (provided it uses the bridge
interface).

The contribution of CentiJ is that it reuses original implementations, without altering
the source code and provides for a means of distributing the computations. CentiJ works
for programs that were not written with distributed computation in mind.

The RMI Problem

The RMI problem can be broken down into two sub-problems. The first is called the
legacy bridge problem. The second is called the virtual proxy synthesizer problem.

The legacy bridge problem may be stated simply as follows, given a large number of
methods in a variety of classes, find a single interface to these methods and an
implementing class so that there is a reuse of the implementations in the existing (i.e.,
legacy code). We are subject to the constraint that we cannot change the existing code.
Further we may not even have the existing source code. The legacy bridge problem is
solved by building code that implements the bridge pattern. The bridge pattern consists
of an interface, or protocol of communication and an implementation of the
communication. Any network layer protocol can use a bridge pattern. Legacy code is
often fragile, hard to maintain, difficult to reverse engineer, unchangeable and sometimes
poorly designed. Hence the constraint that we can not change the legacy code base.
Subject to these constraints, CentiJ builds a bridge between new code and the legacy
system. Thus providing a solution to the legacy bridge problem.

The virtual proxy problem is the second sub-problem solved by CentiJ. With the
virtual proxy, the goal is to method-forward to an existing implementation. CentiJ uses
inputs from the legacy bridge problem and generates code that can be invoked on a
remote address space.

Thus, CentiJ solves the RMI problem by gathering the implementations of a set of
classes and generating a virtual proxy.

Motivation

RMI code is typically written manually. This requires an extensive analysis of the
existing code. Typically, a large number of dependencies between classes complicates the
analysis [Korman]. The bridge pattern serves to regulate the communications between the
legacy code and the new code. This regulation prevents changes from propagating to new
code by holding the interface constant.

CentiJ generates source code from a collection of classes so that the system has an
improved internal structure but identical external behavior (i.e., the code is refactored, but
existing source is left unchanged). Refactoring is a key approach for improving object-
oriented systems [Tichelaar]. Typical refactoring is performed by altering existing code.
However, we are constrained from altering the legacy code and so CentiJ uses the bridge
pattern as a means to leave the legacy code unchanged during refactoring. Some benefits

INTRODUCTION

VOL. 1, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 119

include: encapsulation of communication, location transparency, low cost of distributed
programs and greater reliability in the generated code.

Approach

There are several ways to design a bridge. Figure 1 shows a simple bridge pattern that
enables a stable, bridge interface to be referenced by an adapter. The adapter is, in turn,
used by the client code.

proxy code
<<uses>>

Legacy Code

Bridge Interface

Bridge Pattern

<<uses>>
Adapter

<<implements>>

<<implements>>
Adapter Interface

Client
Code

<<uses>>

Figure 1. A Simple Bridge Pattern

For example, the JDBC-ODBC bridge, enables Java classes to have access to a stable
interface for executing structured query language (SQL). The implementation of JDBC-
ODBC bridge is often loaded dynamically and plays the role of the proxy code in
Figure 1. The proxy code implements the bridge interface and delegates to the legacy
relational database management system (RDBMS) for its implementation.

CentiJ uses delegation to build the bridge code. The CentiJ program generator adds a
new binding time. There are now three binding times to consider:

1. Generation time: the time source code is output
2. Compile time: when the synthesized code is compiled
3. Run time: when the synthesized code is executed. [Cleaveland]

If we try to combine steps 1, 2 and 3, we loose type safety (an important feature of CentiJ
code). This is because we cannot know about interface types before the code is

 CENTIJ: AN RMI CODE GENERATOR

120 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 5

synthesized and compiled. An alternate design (based in dynamic proxies) is discussed in
Section 2.2.

CentiJ’s program generator uses the reflection API. The reflection API enables
running Java programs to discover information about types (i.e., classes and interfaces) at
runtime. CentiJ not only leaves existing legacy code unmodified, the source code is not
needed, since all the information needed to generate the RMI code can be obtained via
reflection.

Figure 2 shows the RMI architecture retrofitted with the bridge pattern shown in
Figure 1.

proxy code
<<uses>>

Legacy Code

Bridge Interface

Bridge Pattern

<<uses>>
Adapter

<<implements>>

<<implements>>
Adapter Interface

Client
Code

<<uses>>

Registry

Remote side

client
side

Transport
Layer

<<uses>>
<<uses>>

Figure 2. RMI and the Bridge Pattern

Figure 2 shows that the synthesized bridge code uses a registry in order to communicate
its existence to the client. After the process of discovery (i.e., looking up the location of
the server code) the client uses the network transport layer to communicate with the
server. The registry acts as a broker, mapping reference to actual objects, registering and
unregistering services. The RMI protocol supports a native SUN protocol as well as the
Internet InterORB Protocol (IIOP) [Sun IIOP]. The client side of the RMI interface is
called a stub. The server side of the RMI interface is called a skeleton. Invocation is
generally unicast (i.e., point-to-point).

VARIOUS BRIDGE IMPLEMENTATIONS

VOL. 1, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 121

2 VARIOUS BRIDGE IMPLEMENTATIONS

This section examines the various implementations of the bridge pattern. The alternatives
are based in delegation. We describe the two types of delegation, dynamic and static.
Dynamic delegation is delegation that is performed at run-time using dynamic class
loading. Static delegation is delegation that is performed at compile time. CentiJ’s static
delegation technique generates Java source code that must be compiled to be used.

We show how dynamic delegation is easy to implement, but also represents a poor
software engineering approach. We then examine static delegation as a sound software
engineering practice. Finally we examine the two kinds of static delegation, manual and
automatic. The automatic technique is a unique contribution of CentiJ. We show how
automatic bridge synthesis eases the creation of proxy classes and interfaces.

bridge
implementations

inheritance

single multiple

delegation

dynamic static

automaticmanual
Figure 3. Various Bridge Implementations

Figure 3 shows the various bridge implementations that we will consider. While manual
static delegation is the most common, type-safe implementation of a bridge, it is also the
most labor intensive. The new mode of automatic static delegation alters the economics
of static delegation so that it is both type-safe and low-cost. Bridges can also be built
using inheritance. Sorry to say, inheritance methods for building bridges are difficult to
implement for a single-inheritance type language (like Java). This is because classes that
comply with the RMI framework typically subclass the UnicastRemoteObject as shown
in Appendix A.

What is Delegation?

There is disagreement about what delegation is (and is not). According to one definition,
delegation uses a receiving instance that forwards messages (or invocations) to its
delegate(s). This is sometimes called a consultation [Kniesel]. This is the definition that
we use in CentiJ.

Variations on delegation give rise to several design patterns. For example, if
methods are forwarded without change to the interface, then you have an example of the

 CENTIJ: AN RMI CODE GENERATOR

122 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 5

proxy pattern. If you simplify the interface with a subset of methods to a set of delegates,
then you have a facade pattern. If you compensate for changes (i.e., deprecations) in the
delegates, and keep the client classes seeing the same contract, then you have the adapter
pattern. If you add responsibilities to the proxy class, then you have the decorator pattern
[Gamma 1995]. Thus, we define static delegation as compile-time, type-safe, message
forwarding from a proxy class to some delegate(s).

Compare this to the definition given by Lieberman [Lie 1986]. With Lieberman-
delegation (i.e., dynamic delegation) the communications pattern is decided at run-time.
Thus, compile-time checks are not performed and the message forwarding is not type-
safe. In JDK1.3 dynamic delegation is more automatic (i.e., it is Lieberman-style). JDK
1.3 can build a proxy object from the reflection API called a dynamic proxy class.

Reflection enables a listing of methods and their signatures. These are used to
forward invocations to the delegates contained by a proxy class. I call this static proxy
delegation, in order to differentiate it from the dynamic proxy classes that have been
introduced in JDK 1.3 [Sun 2000].

CentiJ refactors code in a type-safe way, without altering it. It is well known that
improper refactoring can break subtle properties in a system. As a result, refactoring is
generally followed by a testing phase [Katoaka]. By using an automatic code generation
technique CentiJ reduces the need for extensive testing.

Before CentiJ, proxy classes were written manually using manual static delegation.
In manual static delegation, an instance is passed to a proxy class as a parameter. A
programmer writes wrapper code that delegates to the contained instance. The code that
contains the wrapper code is called the proxy class. The code that contains the
implementation code is called the delegate. For example:

Final class Movable {
 int x = 0;
 int y = 0;

 public void move(int _x, int _y) {
 x = _x;
 y = _y;
 }
}

To add a feature to the Movable class we cannot subclass it, because the class is final. We
might be tempted to modify the Movable class, however, source code might not be
available. For example, suppose we want a MovableMammal: To leave the existing code
unchanged, we use manual static delegation:

VARIOUS BRIDGE IMPLEMENTATIONS

VOL. 1, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 123

class Mammal {
 public boolean isHairy() {
 return true;
 }
}

Our manually written delegation code follows:

public class MovableMammal {
 Mammal m;
 Movable mm;

 MovableMammal(Mammal _m, Movable _mm) {
 m = _m;
 mm = _mm;
 }

// this is message forwarding
 public void move(int x, int y) {
 mm.move(x,y);
 }
 public void isHairy() {
 return m.isHairy();
 }
}

CentiJ generates proxy classes, like the MovableMammal class, automatically. It even
defines an interface to the MovableMammal so that the protocol of communication to the
MovableMammal will always meet a minimum requirement. CentiJ generates code (and
resolves name collisions) using the reflection API and either topological sorting or a GUI
for programmer direction. This enables the automatic generation of bridge interfaces to
large numbers of methods in a variety of classes. For example, the following code was
generated automatically:

interface MammalMovableStub extends
 MammalStub, MovableStub {
}
 interface MammalStub {
 public boolean isHairy();
 }
 interface MovableStub {
 public void move(int v0,int v1);
 }

 CENTIJ: AN RMI CODE GENERATOR

124 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 5

While it is true that the MovableMammal is neither Movable nor a Mammal, it is equally
valid to describe the MovableMammal as a new reference data type that has all the
implementations of its delegates (Movable and Mammal). This delegation technique is
different than one based in specialization, but it is more practical in a single-inheritance
language.

It has been asserted that refactoring must be language dependent because it must
understand the language of the programs that it is manipulating. This is generally untrue
since our system makes use of the reflection API and this API (or its equivalent) could be
written for almost any language, in theory [Johnson].

Dynamic Delegation vs. Static Delegation

Delegation adds references to helper classes that can process the data, then delegate to the
other classes for the implementation. Delegation has long been thought of as a
generalization of inheritance (a point of view with which there is disagreement) [Aksit
1991] [Bracha].
Delegation has the disadvantage that:

1. The computational context must be passed to the delegate.
2. There is no straightforward way for the delegate to refer back to the delegating

object [Viega].
3. The proxy class is coupled to the delegates.

With JDK 1.3, there is a new technique called dynamic proxies [Sun 2000]. Dynamic
proxies have all the disadvantages of delegation and:

4. They are harder to understand than more static software.
5. Dynamic delegation is slower than static delegation.
6. The design has a counterintuitive class structure [Korman]
7. Type-safe dynamic delegation is impossible [Kniesel 98].

Point 7 requires some discussion. Dynamic proxies can’t be compile-time checked for
unresolved messages. In contrast, static delegation does provide compile-time checking
of unresolved messages. This is a critical difference. Even inheritance will compile-time
check unresolved messages. Thus, in the spectrum of type-safety, we have, in order of
most-safe first:

1. Static delegation
2. Inheritance
3. Dynamic proxy classes

Inheritance is less type-safe than static delegation because shadowing is typically
allowed, without warning, at compile time. Thus, some unexpected behavior can result.
This raises the problem of disambiguation.

CentiJ solves the problem of disambiguation by topological sorting or by using a
GUI that requires selection from the methods with conflicting signatures. CentiJ used to
output ambiguous code, allowing the programmer to resolve ambiguities at compile-time.
The last technique was found unreliable since the programmer was performing an error-
prone activity.

VARIOUS BRIDGE IMPLEMENTATIONS

VOL. 1, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 125

Figure 4. The Disambiguation GUI

Figure 4 shows the GUI presented to the programmer during the disambiguation process.
Such a system runs counter to the delegation described by Kniesel. Kniesel has defined
delegation as having automatic method forwarding (i.e., Lieberman delegation). We
prefer to use the term dynamic delegation. The static method forwarding (which Kniesel
says is not “true” delegation) is what I define as static delegation [Kniesel 99] [Kniesel
01]. Static delegation is type-safe, dynamic delegation is not. The methods invoked
remain the same, but the change in behavior comes from a change in implementation.

Stroustrup tried an implementation of dynamic delegation in C++. He reported that
every user of the delegation mechanism “suffered serious bugs and confusion”. He says
that the primary reasons are that functions in the proxy do not override functions in the
delegate and functions in the delegate can not get back to the proxy (i.e., the this is in a
different context). Stroustrup mentions a solution, by manually forwarding a request to
another object (i.e., static delegation) [Stro 1994].

The static delegation of CentiJ alters behavior in a type-safe way, at run-time, by
using polymorphic delegates.
Manual delegation has the disadvantage that:

1. Tedious wrappers need to be written for each method.
2. Manually writing forwarding methods is error-prone.
3. Programmers write arbitrary code in a forwarding method. This can give an object

inconsistent interface.
4. Programmers must decide which message subset must be forwarded.

Automatic proxy synthesis overcomes these problems:
1. CentiJ does not generate arbitrary code.
2. The interface to the instances remains consistent.
3. The delegation is subject to in-line expansion and is more efficient than multiple

inheritance or dynamic proxies
4. The mechanism for forwarding is obvious and easy to understand.
5. The proxy is coupled to the delegate in a more controlled manner than dynamic

delegation.

 CENTIJ: AN RMI CODE GENERATOR

126 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 5

6. Classes that use the proxy are presented with a stable bridge interface.
7. CentiJ lowers the cost of software maintenance via automatic code generation.

Problems that remain unsolved by CentiJ include:
1. Lack of straightforward way for the delegate to refer back to the delegating object

[Viega].
2. The computational context must still be passed to the delegate [Kniesel].
3. The proxy class is fragile. If the interface to the delegate changes, the forwarding

method in the proxy must change [Kniesel 1998].
4. A new binding time is needed with static proxy delegation (automatic or manual).

In comparison, dynamic proxy classes generate runtime errors, run slower and need no
pre-compilation. We favor compile-time errors over runtime errors, and so find our
technique superior in this regard. The trade-off is pay now or pay later.

Semi-automatic synthesis of delegation code addresses the time-consuming and
error-prone drawback of manual delegation. It is also easier to understand. The basic
issue is that a balance must be struck between code reuse and the fragility that arises from
coupling, a measure of component interdependency. This balance is obtained by good
object-oriented design (and is hard to automate!). CentiJ uses the following Stroustrup-
suggested rules for code generation:

1. Ambiguities are illegal.
2. Only public methods are available
3. The methods are all public in the proxy class.
4. Subtyping is done with interfaces, not proxies.
5. Both proxy classes and interfaces are synthesized automatically.
6. Type checking is static.
7. Ambiguity resolution is static (i.e., done at code synthesis time).

CentiJ code, once compiled, never gets messages like “can’t find method” [Wand].
Appendix A and Appendix B show examples of automatically generated CentiJ code, and
its use.

Summary of findings

We have reviewed different techniques for implementing the bridge pattern. We
discussed using language extension to add delegation, language extension to add multiple
inheritance, API extension to add delegation and API extension to add manual delegation.
Approaches that use language extension fail for pragmatic reasons (lack of compatible
tools, slow adoption, slow code, etc.). Approaches that use API extension are easier to
deploy, in general, since they work with existing frameworks.

Generally, inheritance enables shared behavior. Some have argued that subtyping
(i.e, the multiple-inheritance of interfaces in Java) is not inheritance. In fact, the bridge
pattern divorces specification from implementation.

VARIOUS BRIDGE IMPLEMENTATIONS

VOL. 1, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 127

single inheritance multiple inheritance
manual static
delegation

automatic static
delegation dynamic proxies

Subclasses must
inherit only a single
implementation from
a super class.

Subclasses must
inherit only a single
implementation from
a super class.

The computational
context must be
passed to the
delegate.

The computational
context must be
passed to the
delegate.

The computational
context must be
passed to the
delegate.

Inheritance
compromises the
benefits of
encapsulation [Coad].

The topological
sorting of the super-
classes have been
cited as a fruitful
source of bugs
[Arnold 1996].

There is no
straightforward way
for the delegate to
refer back to the
delegating object
[Viega].

There is no
straightforward way
for the delegate to
refer back to the
delegating object
[Viega].

There is no
straightforward way
for the delegate to
refer back to the
delegating object
[Viega].

Inheritance
hierarchy changes
are unsafe [Snyder].

Inheritance
compromises the
benefits of
encapsulation [Coad].

The proxy class is
coupled to the
delegates.

The proxy class is
coupled to the
delegates.

The proxy class is
coupled to the
delegates.

Conflicts between
multiple parents are
not reported.
Ambiguity resolution
has long been known
as a problem with
inheritance
[Kniesel].

Inheritance
hierarchy changes
are unsafe [Snyder].

Tedious wrappers
need to be written
for each method.

The synthesis does
not generate
arbitrary code.

They are harder to
understand than
more static
software.

Conflicts between
multiple parents are
not reported.
Ambiguity resolution
has long been known
as a problem with
inheritance
[Kniesel].

Manually writing
forwarding methods
is error-prone.

The interface to the
instances remains
consistent.

Dynamic delegation
is slower than static
delegation.

Taxonomically
organized data has
become
automatically
associated with
object-oriented
programming
[Cardelli].

Programmers write
arbitrary code in a
forwarding method.
This can give an
object an
inconsistent
interface.

The delegation is
subject to in-line
expansion and is
more efficient than
multiple inheritance.

The design has a
counterintuitive
class structure
[Korman]

Java has no built in
support for multiple
inheritance

Programmers must
decide which
message subset must
be forwarded.

The mechanism for
forwarding is
obvious and easy to
understand.

Type-safe dynamic
delegation is
impossible [Kniesel
98].

Extensions to the
language are
generally
incompatible with
legacy code

The compilation of
generated code, is
required

Proxy is coupled to
the delegate in a
more controlled
manner than
automatic dynamic
delegation.
Adapters possible

Lower the cost
maintenance,
improved reusability
The compilation of
generated code, is
required

Figure 5. Summary of trade-offs

Figure 5 shows the trade-off summary for implementing the bridge pattern. A comparison
is made between the various kinds of delegation with the various kinds of specialization.
There are two kinds of specialization, single-inheritance and multiple-inheritance. There
are two basic kinds of delegation, dynamic and static. The dynamic delegation is slow
and makes type-safety impossible. The static delegation is fast, and type-safe. There are
two kinds of static delegation, manual and automatic. The manual delegation requires
programmers write method-forwarding code, a process that is both error-prone and

 CENTIJ: AN RMI CODE GENERATOR

128 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 5

tedious. The automatic-static delegation has been shown to be an easy-to-deploy
technique that generates proxy classes that are both type-safe and easy to understand.

3 RELATED WORK

There are several projects that aim at making Java programs parallel. Once example is the
Do! project [Launay]. The Do! project does not use a static refactoring of the code to
help with distrubutions instead it uses special kinds of distributed collections to explictly
express concurrency.

Another tool, Orca automated distribution decisions using a run-time system for
placement and replication selection for remote jobs [Bal]. The Ninja project uses clusters
of workstations, active proxies and low-level bytecode specialization for fine-grained
parallelism. The Pangaea system uses a static source code analysis and a middleware
back-end to distribute centralized Java programs. J-Orchestra takes the approach of fine-
grained automatic parallelism using byte-code output from the Java compiler. J-
Orchestra, Do!, Orca, Ninja and Pangaea do not attempt to perform any type of
refactoring or code generation. Also they try to automate the decision for placing
programs on other systems (a decision that is hard to automate). Their fine-grained
approach to automating parallelism does not take into account the programmers’ input
(which often stems from specialized knowledge about the problem domain and code
structure). [Tilevich] [Spiegel] [Spiegel 2000] [Gribble].

Means of automating RMI are not new. JavaParty has been around for some time
(see http://wwwipd.ira.uka.de/JavaParty/tour.html). However, it requires that the
language be modified. Further, it does not gather instances to build bridges as CentiJ
does.

Tools for refactoring code automatically are not new [Opdy92b], [Opdy93a],
[John93b] [Casais]. Language independent tools for refactoring code are not new either
[Tichelaar]. Even the use of explicit and parametrical bindings to create type-safe
inheritance is not new [Hauck]. Manual refactoring has long been recognized as an
important component in extreme programming [Deursen]. All these refactoring
techniques alter existing code, something CentiJ does not do.

Other source-code based tools for automatic refactoring include the Smalltalk
Refactoring Browser [Roberts], the IntelliJ Renamer (http://www.intellij.com), which
supports renaming of identifiers and the Xref-Speller (http://www.xref-tech.com/speller/)
which supports set refactorings. The Xref-Speller is based in emacs macros and serves to
perform a cross-reference analysis. This is useful for the renaming feature, (and its ability
to generate cross-linked html code). The Daikon invariant detector reads source code and
depends on instrumentation of the source code for full function
(http://sdg.lcs.mit.edu/~mernst/daikon/). None of the afore mentioned tools automate
bridge synthesis. This is also true for the class composition proposed by Harrison and
Ossher [Harrison].

http://wwwipd.ira.uka.de/JavaParty/tour.html
http://www.intellij.com
http://www.xref-tech.com/speller/
http://sdg.lcs.mit.edu/~mernst/daikon/

RELATED WORK

VOL. 1, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 129

Casais has worked on automatic restructuring of the class hierarchy (by altering
source code). The idea is that subclasses inherit everything from the superclasses. Also,
CentiJ interfaces are used to capture information about the type hierarchy, not sub-
classes.

Fanta and Rajlich have also worked on altering existing code, by moving functions
around, expelling them from classes, refactoring properties and updating invocations to
these elements. Moore has also worked on automatic refactoring and method
restructuring. This work refactors expressions from methods. The Guru tool of Moore
automatically refactors common code out of methods into abstract super-classes. For a
programming language that lacks multiple inheritance (like Java) this effort can adversely
affect how methods can be shared [Moore]. Casais claims that there may not be any case
studies on the automatic reorganization of class hierarchies [Casais]. Thus, the question
of how the code quality is changed by these systems remains open.

Our technique for static delegation requires that every instance be passed to a proxy-
class, along with its execution context. Thus a programmer’s updates in the protocol for
communicating the means to pass parameters will have to be updated in the proxy class.
This is the solution I took in Java Digital Signal Processing [Lyon 1998].

The CentiJ approach to automating the synthesis of bridge code is like the pre-
processor approach of the Jamie system used by [Viega]. A problem with Jamie is that it
extends the language by creating a macro-preprocessor. Also, Jamie uses dynamic
delegation.

The LAVA language extends Java to provide for delegation. Kniesel says that
current implementations of LAVA have an efficiency that is unacceptable [Kniesel 98]
[Kniesel 99]. In comparison, CentiJ is fast. In fact, with in-lining enabled, there is no
performance degradation.

Fisher and Mitchell provide a new delegation-based language [Fisher]. The primary
advantage of the Fisher-Mitchell system is its ability to infer type, resolving method
names at compile-time. Sorry to say, they had to devise a new language for this. In
comparison, CentiJ works by API extension, rather than by creating a new language. An
API extension is easier to deploy into an existing environment than a new language.

Delegation has been cited as a mechanism to obtain implementation inheritance via
composition [Lie 1986], [Jz 1991]. Delegation was introduced in a prototype-based object
model by Lieberman in 1986 [Lie 1986]. Lieberman indicated that delegation is
considered safer than inheritance because it forces the programmer to select which
method to use when identical methods are available in two delegate classes. Systems, like
Kiev, extend the Java language so that it has multiple inheritance of implementation
(http://www.forestro.com/kiev/kiev.html). Such language extensions are non-standard
and unportable.

Reverse engineering programs, such as Lackwit, are able to discover inheritance
relationships with greater ease than composition associations [O’Callahan]. That is

http://www.forestro.com/kiev/kiev.html

 CENTIJ: AN RMI CODE GENERATOR

130 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 5

because the inheritance association implies a specialization semantic. On the other hand,
composition association scales better than signle inheritance.

Message forwarding is an implementation sharing mechanism [Kniesel]. Experts
have disagreed on this point, saying that delegation is a form of class-inheritance (since
the execution context must be passed to the delegate). I take the opposite view, as class-
inheritance type of sharing of context involves name sharing, property sharing and
method sharing. Sharing via delegation is instance sharing. The semantics of instance
sharing enable a control of the coupling between instances. This provides a mechanism
for reuse without introducing uncontrolled cohesion (which increases brittleness in the
code) [Bardou]. Tim Lavers published a technique for automatically generating RMI
source code [Lavers]. It is very close to what CentiJ presents except that it does not
gather the instances to build a bridge class, and makes use of dynamic proxy invocation.
Also, it creates the stubs and skeletons via a dynamic invocation of RMIC (which is
generally unreliable, and non-portable, in our experience). The reliabilty issue is raised by
making use of platform dependent invocations to the operating system (hard-coding
pathnames in the process).

In summary, all the refactoring systems reviewed in this section (except [Lavers])
not only need to read the source code, but they are like the Elbereth system in that they
alter source code [Korman]. In the literature that we have reviewed, we have yet to find a
means for automatically creating the bridges created by CentiJ. A macro system (or
templates) would be a logical means of providing this ability, but, sorry to say, this would
a require a modification of Java.

Methods for automatically generating adapters are not new. In fact, C++ has had a
template feature for years [Stroustrup 1991]. Sorry to say, Java has no template feature,
and one is needed. In answer to this need Veldhuizen created a Java pre-processor called
Lunar [Veldhuizen 2000]. The goal of Lunar, however, is to post-process the Java into C,
for the purpose of optimization of computation. Volanschi et Al. extend the Java
language to implement specialization classes, as did Viroli et Al. [Volanschi] [Viroli].
Meyers et Al. have also proposed extending Java in order to add “generics” in Java
(another name for templates). Sun has taken up the task of modifying Java to add
generics in a draft version of their compiler. The language feature is said to be the second
most often asked for language extension of Java. Sorry to say, the draft and specification
are held as proprietary to the Java developer connection, and therefore cannot be
disclosed here.

There are compelling arguments against altering the Java language in order to add
generics. For one, it will make the language more complicated. Adding some API calls to
generate source code is an easy to deploy technique and leaves Java compatible. Since
Java is linked in runtime, templates will require code replication (like C++). This is just
as easy to do with an API as it is with a pre-processor built into the compiler. Naturally,
the generated code would be faster if generics were included as a part of the JVM, but
speed was never a design goal of the Java language (as far as I know).

4 CONCLUSIONS

CONCLUSIONS

VOL. 1, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 131

CentiJ does method forwarding across a transport layer in a manner invisible to the
programmer. This helps to isolate client code from changes in the interfaces in the
delegates. CentiJ can use a fully automatic system for resolving method ambiguity (via
topological sorting).

Delegation with static binding enables inlining of code. Thus static delegation does
not suffer from the performance degradation of dynamic delegation.
In brief:

1. Dynamic delegation is more automatic than static delegation.
2. Dynamic delegation is not type-safe, but static delegation is.
3. Automatic static delegation is almost as automatic as dynamic delegation, and just

as type safe as static delegation.
The choice between static and dynamic delegation is a choice between safety and
flexibility. [Agesen].

The following are some heuristics for the use of CentiJ:
• If polymorphism is needed, then use the automatically generated interface stubs,

that CentiJ provides.
• If proxies are needed, then use CentiJ for generating proxies.
• If source code is unavailable, there may be little other choice.
• If source code is available, refactoring by hand may lead to better code, but may

have an effect on a large number of client classes and require testing.
• If many programmers require a stable interface, then use the automatically

generated bridge.
• In the case where the contracts shift in the delegates, allow the facade to become

an adapter-facade-proxy, in order to protect the clients.
Deepening subclasses in order to add features is a fast way to create poor code that is
very fragile. It is a poor way to introduce sub-typing. Only use subclasses if the class
theoretic approach is appropriate to the domain, and then only if the taxonomic hierarchy
is unlikely to change.

CentiJ decouples proxy delegation from subtyping. Benefits include:
1. An upwardly compatible extension.
2. Realistic performance.
3. A practically useful tool.
4. Inheritance restricted to subtypes only.
5. Name collisions resolved by topological sorting or programmer interaction.
6. No need for access to existing source code

In brief, automatic program generation of proxy classes provides a new way to refactor
legacy code and alters the economics of implementation reuse in single inheritance type
languages.

 CENTIJ: AN RMI CODE GENERATOR

132 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 5

5 FUTURE WORK

More work is required to quantify the improvement accomplished by CentiJ’s refactoring
techniques. Metrics to quantify these improvements are elusive.

A next step in automation is the selection of which instance should be remotely
invoked. Currently, we need a programmer for this. At present, fully-automatic systems
can not overcome the limits of gnoseology in order to improve on the epistemology. A
semantic network may help.

Casais claims that there may not be any case studies on the automatic reorganization
of class hierarchies [Casais]. Thus, the question of how the code quality is changed by
these systems remains open.

When the communication between agents is based on a modified interface we create
what has been termed a contract network protocol [Davis and Smith]. A contract
network protocol helps to isolate a system from deprecations in the delegate methods.
Sun’s repeated introduction of deprecation into its API’s has become epidemic. To
determine if a contract network protocol could help keep these deprecations from
propagating to exsiting code is a topic of future research.

Given a registration mechanism (like the RMIRegistry) it should be possible to
automate the program generation of the code for distributed computation. Of course a
programmer will still be needed to decide where to segment the problem.

Distributed computation on an unreliable network is an open problem. Also difficult
is to determine how to dynamically load balance the computations across such a network.
We presently have a method for sorting machines by load and returning the least loaded
machine from a list. Sorry to say, the method is based on a shell script and only works for
Unix machines. This should be replaced by dynamically benchmarking the speed of a
loaded JVM.

6 REFERENCES

[Agesen] Ole Agesen, Jens Palsberg, and Michael I. Schwartzbach. “Type Inference of
SELF: Analysis of Objects with Dynamic and Multiple Inheritance”. In
ECOOP '93 Conference Proceedings, p. 247-267. Kaiserslautern, Germany,
July 1993

[Aksit 1991] Mehmet Aksit, Jan Willem Dijkstra. “Atomic Delegation: Object-oriented
transactions”, IEEE Software, Los Alamitos, CA, IEEE Computer Society.
March 1991.pps. 84-92.

[Arnold 1996] Ken Arnold and James Gosling. The Java Programming Language,
Addison-Wesley, Reading, MA. 1996.

REFERENCES

VOL. 1, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 133

[Arnold 1998] Ken Arnold and James Gosling. The Java Programming Language,
Second Edition, Addison-Wesley, Reading, MA. 1998.

[Bal] Bal, H.E., et al. “Performance Evaluation of the Orca Shared-Object
Systems” ACM Trans. CS, Vol. 16, No. 1 (1998) pps. 1-40.

[Bardou] D. Bardou and C. Dony. “Split Objects: A Disciplined Use of Delegation
Within Objects”. In Proceedings of OOPSLA'96, Sans Jose, California.
Special Issue of ACM SIGPLAN Notices (31)10, pages 122-137, 1996.
http://citeseer.nj.nec.com/bardou96split.html

[Bracha] G. Bracha. “The Programming Language JIGSAW: Mixins, Modularity and
Multiple Inheritance”. Ph.D. thesis, Department of Comp. Sci., Univ. of Utah,
1992

[Brant] John Brant, Brian Foote, Ralph E. Johnson, and Donald Roberts. “Wrappers
to the Rescue”. In Proceedings of ECOOP'98, July 1998.
http://citeseer.nj.nec.com/189005.html

[Booch 1991] Grady Booch. Object-Oriented Design, Benjamin Cummings, Redwood
Cits, CA. 1991.

[Cardelli] L. Cardelli, “Semantics of Multiple Inheritance”, Information and
Computation, 76 (1988) 138-164.
http://citeseer.nj.nec.com/cardelli88semantics.html

[Casais] E. Casais, “Automatic reorganization of object-oriented hierarchies: a case
study”, Object Oriented Systems, 1 (1994), pp. 95-115

[Cleaveland] J. Craig Cleaveland, Program Generators with XML and Java. Prentice
Hall, NJ. 2001.

[Coad] Peter Coad and Mark Mayfield. “Java-Inspired Design: Use Composition
Rather than Ineritance”, American Programmer, Jan. 1997, pps. 23-31.

[Compagnoni] Compagnoni, A. B., & Pierce, B. C. 1993 (Aug.). “Multiple Inheritance
via Intersection Types”. Tech. rept. ECS-LFCS-93-275. LFCS, University of
Edinburgh. Also available as Catholic University Nijmegen computer science
technical report 93-18. http://citeseer.nj.nec.com/compagnoni93multiple.html

[Cox] B. Cox. “Message/Object Programming: An evolutionary change in
programming technology”, IEEE Software (1)1. Jan 1982.

[Davis and Smith] R. Davis, and R.G. Smith, “Negotiation ias a metaphor for distributed
problem solving”, Artificial Intelligence, No. 20, pps. 63-109.

[Deursen] A. van Deursen, L. Moonen, A. van den Bergh, and G. Kok. “Refactoring test
code”. In M. Marchesi, editor, Extreme Programming and Flexible Processes;
Proc. XP2001, 2001. http://citeseer.nj.nec.com/vandeursen01refactoring.html

[Fanta] Fanta R., Rajlich V., "Reengineering Object-Oriented Code", in Proceedings
of the International Conference on Software Maintenance, IEEE Computer

http://citeseer.nj.nec.com/bardou96split.html
http://citeseer.nj.nec.com/189005.html
http://citeseer.nj.nec.com/cardelli88semantics.html
http://citeseer.nj.nec.com/compagnoni93multiple.html
http://citeseer.nj.nec.com/vandeursen01refactoring.html

 CENTIJ: AN RMI CODE GENERATOR

134 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 5

Society Press, Los Alamitos CA, 1998, pp. 238 - 246.
http://citeseer.nj.nec.com/fanta98reengineering.html

[Fisher] K. Fisher and J. C. Mitchell. “A Delegation-based Object Calculus with
Subtyping”. In Proc. of FCT, volume 965 of Lecture Notes in Computer
Science, pages 42--61. Springer-Verlag, 1995.
http://citeseer.nj.nec.com/104746.html

[Frank] Ulrich Frank. “Delegation: An Important Concept for the Appropriate Design
of Object Models”, Journal of Object Oriented Programming, June 2000.
pps. 13-17,44

[Fraser] Timothy Fraser, Lee Badger, and Mark Feldman. “Hardening COTS Software
with Generic Software Wrappers”. In IEEE Symposium on Security and
Privacy, May 1999. http://citeseer.nj.nec.com/fraser99hardening.html

[Gamma 1995] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. Design
Patterns, Addison-Wesley, Reading, MA. 1995.

[Gribble] Steven D. Gribble, Matt Welsh, Rob von Behren, Eric A. Brewer, David
Culler, N. Borisov, S. Czerwinski, R. Gummadi, J. Hill, A. Josheph, R. H.
Katz, Z. M. Mao, S. Ross, and B. Zhao. “The Ninja Architecture for Robust
Internet-Scale Systems and Services”. Special Issue of Computer Networks
on Pervasive Computing, 2000. (to appear).
http://citeseer.nj.nec.com/gribble00ninja.html

[Har] S. Harbison. Modula-3. Prentice Hall, 1992.

[Hauck] F. J. Hauck: "Inheritance modeled with explicit bindings: an approach to
typed inheritance"; Proc. of the Conf. on Object-Oriented Progr. Sys., Lang.,
and Appl. -- OOPSLA, (Washington, D.C., Sep. 26-Oct. 1, 1993); SIGPLAN
Notices 28(10) , http://citeseer.nj.nec.com/hauck93inheritance.html

[Harrison] William Harrison, Harold Ossher and Peri Tarr, “Using Delegation for
Software and Subject Composition”, Research Report RC 20946, IBM
Thomas J. Watson Research Center, August 1999.
http://www.research.ibm.com/sop/soppubs.htm

[Jennings] Jennings, N., and Wooldridge, M. (2000) "Agent-Oriented Software
Engineering". In Handbook of Agent Technology (ed. J. Bradshaw)
AAAI/MIT Press. (to appear)
http://citeseer.nj.nec.com/wooldridge99agentoriented.html

[John93b] Ralph E. Johnson and William F. Opdyke, “Refactoring and Aggregation”,
Object Technologies for Advanced Software - First JSSST International
Symposium, Lecture Notes in Computer Science, Vol. 742, Springer-Verlag,
1993.

[Johnson] Ralph E. Johnson and William F. Opdyke. “Refactoring and aggregation”. In
S. Nishio and A. Yonezawa, editors, International Symposium on Object
Technologies for Advanced Software, pages 264-278, Kanazawa, Japan,

http://citeseer.nj.nec.com/fanta98reengineering.html
http://citeseer.nj.nec.com/104746.html
http://citeseer.nj.nec.com/fraser99hardening.html
http://citeseer.nj.nec.com/gribble00ninja.html
http://citeseer.nj.nec.com/hauck93inheritance.html
http://www.research.ibm.com/sop/soppubs.htm
http://citeseer.nj.nec.com/wooldridge99agentoriented.html

REFERENCES

VOL. 1, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 135

November 1993. JSSST, Springer Verlag, Lecture Notes in Computer
Science. http://citeseer.nj.nec.com/johnson93refactoring.html

[Jz 1991] Johnson and Zweig. Delegation in C++, Journal of Object-Oriented
Programming, 4(11):22-35, November 1991.

[Kataoka] Yoshio Kataoka and Michael D. Ernst and William G. Griswold and David
Notkin, “Automated Support for Program Refactoring using Invariants”
http://citeseer.nj.nec.com/kataoka01automated.html.

[Kniesel] Günter Kniesel: “Implementation of Dynamic Delegation in Strongly Typed
Inheritance-Based Systems”. Technical report IAI-TR-94-3, Oct. 1994,
University of Bonn, Germany.
http://citeseer.nj.nec.com/kniesel95implementation.html

[Kniesel 98] Günter Kniesel: “Delegation for Java: API or Language Extension?”.
Technical report IAI-TR-98-5, May, 1998, University of Bonn, Germany.
http://citeseer.nj.nec.com/kniesel97delegation.html

[Kniesel 99] Günter Kniesel, “Type-Safe Delegation for Run-Time Component
Adaptation”, In R. Guerraoui (Ed.): Proceedings of ECOOP99. Springer
LNCS 1628. http://citeseer.nj.nec.com/kniesel99typesafe.html

[Kniesel 01] Günter Kniesel, private e-mail communications, kniesel@cs.uni-bonn.de.

[Korman] W. Korman and W. G. Griswold. “Elbereth: Tool support for refactoring Java
programs”. Technical report, University of California, San Diego Department
of Computer Science and Engineering, May 1998.
http://citeseer.nj.nec.com/korman98elbereth.html

[Lea] Doug Lea, Concurrent Programming in Java, Design Principles and
Patterns, AW. 1997.

[Lie 1986] Henry Leiberman. Using prototypical objects to implement share behavious
in object-oriented systms. In Object-oriented Programming Systems,
languages and Applications Conference Proceedings, Pages 214-223.

[Launay] P. Launay, J.-L. Pazat. “A framework for parallel programming in Java”. In
HPCN'98, LNCS, April 1998
http://citeseer.nj.nec.com/launay97framework.html

[Lavers] Tim Lavers, “Java Tip 108: Apply RMI autogeneration”,
http://www.javaworld.com/javaworld/javatips/jw-javatip108.html

[Lyon 1998] Douglas Lyon and Hayagriva Rao. Java Digital Signal Processing, M&T
Books, NY, NY. 1998.

[Lyon 1999] Douglas Lyon. Image Processing in Java, Prentice Hall, M&T Books, NY,
NY. 1998.

[Lyon 2002] Douglas Lyon, The DocJava Home Page, http://www.docjava.com.

http://citeseer.nj.nec.com/johnson93refactoring.html
http://citeseer.nj.nec.com/kataoka01automated.html
http://citeseer.nj.nec.com/kniesel95implementation.html
http://citeseer.nj.nec.com/kniesel97delegation.html
. http://citeseer.nj.nec.com/kniesel99typesafe.html
mailto:kniesel@cs.uni-bonn.de
http://citeseer.nj.nec.com/korman98elbereth.html
http://citeseer.nj.nec.com/launay97framework.html
http://www.javaworld.com/javaworld/javatips/jw-javatip108.html
http://www.docjava.com

 CENTIJ: AN RMI CODE GENERATOR

136 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 5

[Meyers] A. C. Myers, J. A. Bank, and B. Liskov: “Parameterized Types in Java”, In:
Proc. of 24th POPL, 132-145, 1997

[Moore] I. Moore. “Automatic inheritance hierarchy restructuring and method
refactoring”. In Proceedings of the Conference on Object Oriented
Programming Systems, Languages and Applications, pages 235-250, October
1996. SIGPLAN Notices, 31(10).
http://citeseer.nj.nec.com/moore96automatic.html

[O’ Callahan] O'Callahan,R., and Jackson, D., “Lackwit: A program understand ool
based on type inference”. In Proceedings of the 1997 International
Conference on Software Engineering (ICSE'96) (Boston, MA, May 1997),
pp. 338--348. http://citeseer.nj.nec.com/329620.html

[Opdy92b] William F. Opdyke, Refactoring Object-Oriented Frameworks, Ph.D.
dissertation, University of Illinois, 1992.
ftp://st.cs.uiuc.edu/pub/papers/refactoring/

[Opdy93a] William F. Opdyke and Ralph E. Johnson, “Creating Abstract Superclasses
by Refactoring”, Proceedings CSC'93, ACM Press, 1993.

[Postema] Margot Postema and Heinz W. Schmidt, Reverse Engineering and
Abstraction of Legacy Systems, http://citeseer.nj.nec.com/151140.html

[Roberts] Don Roberts, John Brant, and Ralph Johnson. “A refactoring tool for
Smalltalk” Theory and Practice of Object Systems, 3(4):253-63, 1997.

[Tichelaar] Sander Tichelaar and Stéphane Ducasse and Serge Demeyer and Oscar
Nierstrasz, “A Meta-model for Language-Independent Refactoring”, IEEE
Proceedings ISPSE, 2000, http://citeseer.nj.nec.com/379788.html

[Snyder] Alan Snyder. “Encapsulation and Inheritance in Object-Oriented
Programming Languages”, Affiliation Software Technology Laboratory,
Hewlett-Packard Laboratories, PO Box 10490, Palo Alto, CA, 94303-0971
http://citeseer.nj.nec.com/328789.html

[Spiegel] Andre Spiegel. Pangaea: An automatic distribution front-end for Java. In
Fourth IEEE Workshop on High-Level Parallel Programming Models and
Supportive Environments (HIPS '99), in Proc. IPPS/SPDP '99, San Juan,
Puerto Rico, USA, April 1999. IEEE.
http://citeseer.nj.nec.com/spiegel99pangaea.html

[Spiegel 2000] Andre Spiegel, “Automatic Distribution in Pangaea”, CBS 2000, Berlin,
April 2000. See also http://www.inf.fu-berlin.de/~spiegel/pangaea/

[Slominski] Aleksander Slominski, M. Govindaraju, D. Gannon and R. Bramley,
“SoapRMI C++/Java 1.1: Design and Implementation”, pre-print
http://citeseer.nj.nec.com/467360.html

[Stro 1987] Bjarne Stroustrup. “Multiple inheritance for C++”. In Proceedings of the
Spring '87 European Unix Systems User's Group Conference, Helsinki,
Finland, May 1987. http://citeseer.nj.nec.com/stroustrup99multiple.html

http://citeseer.nj.nec.com/moore96automatic.html
http://citeseer.nj.nec.com/329620.html
ftp://st.cs.uiuc.edu/pub/papers/refactoring/
http://citeseer.nj.nec.com/151140.html
http://citeseer.nj.nec.com/379788.html
http://citeseer.nj.nec.com/328789.html
http://citeseer.nj.nec.com/spiegel99pangaea.html
http://www.inf.fu-berlin.de/~spiegel/pangaea/
http://citeseer.nj.nec.com/467360.html
http://citeseer.nj.nec.com/stroustrup99multiple.html

REFERENCES

VOL. 1, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 137

[Stroustrup 1991] Bjarne Stroustrup. The C++ programming Language, Addison-
Wesley, Reading, MA. 1991.

[Stro 1994] Bjarne Stroustrup. The Design and Evolution of C++, Addison-Wesley,
Reading, MA. 1994.

[Sun IIOP] Sun Microsystems, “RMI over IIOP”, http://java.sun.com/products/rmi-iiop

[Sun 2000] Tech Tips, “Using dynamic proxies to layer new functionalirty over existing
code” May 30, 2000,
http://developer.java.sun.com/developer/TechTips/2000/tt0530.html

[Sun 2001] “The JavaBeans Runtime Containment and Services Protocol specification”
May 24, 2001, http://java.sun.com/products/javabeans/glasgow/#containment.

[Tempero] Ewan Tempero and Robert Biddle, “Simulating mulitiple inheritance in
Java”, The Journal of Systems and Software 55(2000) pps. 87-1000,
Springer-Verlag.

[Tilevich] Eli Tilevich, “J-Orchestra: Automatic Java Application Partitioning”, pre-
publication http://citeseer.nj.nec.com/473381.html

[Vega] John Viega and Bill Tutt and Reimer Behrends, “Automated Delegation is a
Viable Alternative to Multiple Inheritance in Class Based Languages”, CS-
98-03, Microsoft Corporation, Feb., 1998,
http://citeseer.nj.nec.com/3325.html

[Veldhuizen 2000] Todd L. Veldhuizen. “Just When You Thought Your Little Language
Was Safe: ``Expression Templates'' in Java”, GCSE, pps. 188-202, 2000.
http://osl.iu.edu/~tveldhui/papers/2000/gcse00/index.html

[Viroli] M.Viroli and A. Natali, "Parametric Polymorphism in Java: an Approach to
Translation Based on Reflective Features" ACM Conference on Object
Oriented Programming: System, Languages and Applications, OOPSLA
2000, held in Minneapolis October 15-19, 2000

[Volanschi] Volanschi , E.-N., Consel, C., Muller, G., and Cowan, C. “Declarative
specialization of object-oriented programs”. In ACM SIGPLAN conference
on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA '97) (October 1997), pp. 286-300

[Wand] Mitchell Wand. “Type inference for record concatenation and multiple
inheritance”. In Fourth Annual IEEE Symposium on Logic in Computer
Science, pages 92--97, Pacific Grove, CA, June 1989.
http://citeseer.nj.nec.com/wand89type.html

http://java.sun.com/products/rmi-iiop
http://developer.java.sun.com/developer/TechTips/2000/tt0530.html
http://java.sun.com/products/javabeans/glasgow/#containment
http://citeseer.nj.nec.com/473381.html
http://citeseer.nj.nec.com/3325.html
http://osl.iu.edu/~tveldhui/papers/2000/gcse00/index.html
http://citeseer.nj.nec.com/wand89type.html

 CENTIJ: AN RMI CODE GENERATOR

138 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 5

Appendix A RMI Synthesis

This section shows how RMI code is synthesized by CentiJ. The basic idea is that CentiJ
must provide the bridge code with support for a transport layer protocol for remote
invocation.

Before CentiJ a programmer “manually” created an adapter that conforms to the
requirements of the RMI framework. CentiJ provides an automatic alternative for manual
adapter synthesis. In RMI a remote object is one whose methods can be invoked from
another Java Virtual Machine (JVM). Often, this is on a different host. An object of this
type is describe by one or more remote interfaces. A remote interface subclasses the
java.rmi.Remote interface. All methods in the subclass must throw a
java.rmi.remoteException in its throws clause. As a simple server example, consider the
TimeServer. The interface to the TimeServer extends the java.rmi.Remote interface, and
all the methods throw java.rmi.RemoteException instances:

public interface TimeServerInterface extends java.rmi.Remote{
 String getTime() throws java.rmi.RemoteException;
}

The implementation of the TimeServerInterface, called the TimeServer, must subclass the
UnicastRemoteObject. This means that it cannot subclass any other classes. This is
because Java lacks multiple inheritance. Therefore the TimeServer must either provide
implementations in its own method bodies or select those implementations via
delegation.

public class TimeServer extends UnicastRemoteObject
 implements TimeServerInterface{

 private String name;

 public TimeServer(String s) throws RemoteException{
 super();
 name=s;
 }

 public String getTime() throws RemoteException{
 Date time=new Date();
 return time.toString();
 }

 public static void main(String args[]){
 System.setSecurityManager(new RMISecurityManager());

 try{
 TimeServer obj=new TimeServer("TimeServer");
 //Create the registry
 // and bind the Server class to the registry
 LocateRegistry.createRegistry(1099);

REFERENCES

VOL. 1, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 139

 Registry r= LocateRegistry.getRegistry();
 r.bind("TimeServer", obj);
 System.out.println("TimeServer bound in registry");
 }catch(Exception e){
 System.out.println("Error: "+e.getMessage());
 e.printStackTrace();
 }
 }
}

Now for the client:

import java.rmi.*;
import java.rmi.registry.*;
import java.net.URL;
import java.util.Date;

public class TimeClient {

 String ip = "192.168.1.95";

 public void run(){

 try{
 Registry r = LocateRegistry.getRegistry(ip);

 TimeServerInterface
 obj=(TimeServerInterface)r.lookup("TimeServer");

 System.out.println("remote time="+obj.getTime());
 }catch (Exception e){
 System.out.println("Error: "+e.getMessage());
 e.printStackTrace();
 }
 localTime=(new Date()).toString();

 }

 public static void main(String args[]){
 TimeClient t= new TimeClient();
 t.run();
 }

Consider how much extra work it took the programmer to generate the above code.
CentiJ automates the generation of the above code so that the bridges are adapted to the
RMI framework automatically.

For example, the RMI synthesizer created a container of Student elements, based on
the Vector class. A new interface substitutes the Student class for the java.lang.Object,
thus requiring that all elements stored in the Vector delegate be of Student type:

 CENTIJ: AN RMI CODE GENERATOR

140 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 5

interface StudentVectorstub extends Remote {
 public static final String className = “StudentVector”;
 public java.lang.String toString() throws
 RemoteException;
 public void copyInto(Student[] v0) throws
 RemoteException;
 public void trimToSize() throws RemoteException;
 public void ensureCapacity(int v0) throws
 RemoteException;
 public void setSize(int v0) throws RemoteException;
 public int capacity() throws RemoteException;
 public int size() throws RemoteException;
 public boolean isEmpty() throws RemoteException;
 public java.util.Enumeration elements() throws
 RemoteException;
 public boolean contains(Student v0) throws
 RemoteException;
 public int indexOf(Student v0) throws RemoteException;
 public int indexOf(Student v0,int v1) throws
 RemoteException;
 public int lastIndexOf(Student v0) throws
 RemoteException;
 public int lastIndexOf(Student v0,int v1) throws
 RemoteException;
 public Student elementAt(int v0) throws RemoteException;
 public Student firstElement() throws RemoteException;
 public Student lastElement() throws RemoteException;
 public void setElementAt(Student v0,int v1) throws
 RemoteException;
 public void removeElementAt(int v0) throws
 RemoteException;
 public void insertElementAt(Student v0,int v1) throws
 RemoteException;
 public void addElement(Student v0) throws
 RemoteException;
 public boolean removeElement(Student v0) throws
 RemoteException;
 public void removeAllElements() throws RemoteException;
}

Based on the pattern of the Vector class, the interface was altered at program generation
time make the input and output be Student elements, rather than Object elements (i.e., this
is a bridge + an adapter). Sometimes called parametric polymorphism [Viroli], altering
the interface so that all the methods throw a RemoteException we adapt the class to the
RMI framework. However, this means extensive wrappering is needed in the delegate.
This is easy, and automatic, with CentiJ.

In the following example, we reuse the implementation of the Vector class to create a
type-safe interface. To generate the interface of the adapter, the synthesizer performs a

REFERENCES

VOL. 1, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 141

class substitution that searches for references to java.lang.Object types and replaces them
with Student types. The implementation of the Adapter interface (i.e., StudentVectorstub)
follows:

// automatically generated by the RMISynthesizer
public class StudentVector extends UnicastRemoteObject
implements StudentVectorStub {

// constructor:
public StudentVector (){
 try{
 //Create the registry
 // and bind the Server class to the registry
 LocateRegistry.createRegistry(1099);
 Registry r= LocateRegistry.getRegistry();
 r.bind(StudentVectorstub.className, obj);
 }catch(Exception e){
 System.out.println("Error: "+e.getMessage());
 e.printStackTrace();
 }
}

private java.util.Vector vector = new java.util.Vector();
 public java.lang.String toString() throws RemoteException {
 return vector.toString();
 }
 public void copyInto(Student[] v0) throws RemoteException {
 vector.copyInto(v0);
 }
 public void trimToSize() throws RemoteException {
 vector.trimToSize();
 }
 public void ensureCapacity(int v0) throws RemoteException {
 vector.ensureCapacity(v0);
 }
 public void setSize(int v0) throws RemoteException {
 vector.setSize(v0);
 }
 public int capacity() throws RemoteException {
 return vector.capacity();
 }
 public int size() throws RemoteException {
 return vector.size();
 }
 public boolean isEmpty() throws RemoteException {
 return vector.isEmpty();
 }
 public java.util.Enumeration elements() throws
 RemoteException {
 return vector.elements();

 CENTIJ: AN RMI CODE GENERATOR

142 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 5

 }
 public boolean contains(Student v0) throws RemoteException {
 return vector.contains(v0);
 }
 public int indexOf(Student v0) throws RemoteException {
 return vector.indexOf(v0);
 }
 public int indexOf(Student v0,int v1) throws RemoteException {
 return vector.indexOf(v0,v1);
 }
 public int lastIndexOf(Student v0) throws RemoteException {
 return vector.lastIndexOf(v0);
 }
 public int lastIndexOf(Student v0,int v1) throws
 RemoteException {
 return vector.lastIndexOf(v0,v1);
 }
 public Student elementAt(int v0) throws RemoteException {
 return (Student) vector.elementAt(v0);
 }
 public Student firstElement() throws RemoteException {
 return (Student) vector.firstElement();
 }
 public Student lastElement() throws RemoteException {
 return (Student)vector.lastElement();
 }
 public void setElementAt(Student v0,int v1) throws
 RemoteException {
 vector.setElementAt(v0,v1);
 }
 public void removeElementAt(int v0) throws RemoteException {
 vector.removeElementAt(v0);
 }
 public void insertElementAt(Student v0,int v1) throws
 RemoteException {
 vector.insertElementAt(v0,v1);
 }
 public void addElement(Student v0) throws RemoteException {
 vector.addElement(v0);
 }
 public boolean removeElement(Student v0) throws
 RemoteException {
 return vector.removeElement(v0);
 }
 public void removeAllElements() throws RemoteException {
 vector.removeAllElements();
 }
}

It is a simple matter to obtain the StudentVectorClient by passing the stub directly to the
client software. However, every method in the proxy throws the RemoteException. As a

REFERENCES

VOL. 1, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 143

result, we wrapper the delegation to handle the exceptions locally. The assumption is that
after the initial construction there should not be any RemoteException instances thrown.
This is justifiable only if the internet connection is reliable. This assumption is valid for
our networks. Distributed computation on an unreliable network is an open problem.

public class StudentVectorProxy {
 private StudentVectorStub vector = null;
 public StudentVectorProxy(String ip) {
 try {
 Registry r = LocateRegistry.getRegistry(ip);
 vector =
 (StudentVectorStub)
 r.lookup(StudentVectorstub.className);
 } catch(Exception e) {
 System.out.println("Error: "+e.getMessage());
 e.printStackTrace();
 }
 }
 public java.lang.String toString() {
 try {
 return vector.toString();
 catch (RemoteException e) {
 return null;
 }
 }
 public void copyInto(Student[] v0) {
 try {
 vector.copyInto(v0);
 }
 catch (RemoteException e) {
 }
 }
 public void trimToSize() {
 try {
 vector.trimToSize();
 }
 catch (RemoteException e) {
 }
 }
 public void ensureCapacity(int v0) {
 try {
 vector.ensureCapacity(v0);
 }
 catch (RemoteException e) {
 }
 }
 public void setSize(int v0) {
 try {
 vector.setSize(v0);

 CENTIJ: AN RMI CODE GENERATOR

144 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 5

 }
 catch (RemoteException e) {
 }
 }
 public int capacity() {
 try {
 return vector.capacity();
 catch (RemoteException e) {
 return null;
 }
 }
 public int size() {
 try {
 return vector.size();
 catch (RemoteException e) {
 return null;
 }
 }
 public boolean isEmpty() {
 try {
 return vector.isEmpty();
 catch (RemoteException e) {
 return null;
 }
 }
 public java.util.Enumeration elements() {
 try {
 return vector.elements();
 catch (RemoteException e) {
 return null;
 }
 }
 public boolean contains(Student v0) {
 try {
 return vector.contains(v0);
 catch (RemoteException e) {
 return null;
 }
 }
 public int indexOf(Student v0) {
 try {
 return vector.indexOf(v0);
 catch (RemoteException e) {
 return null;
 }
 }
 public int indexOf(Student v0,int v1) {
 try {
 return vector.indexOf(v0,v1);
 catch (RemoteException e) {
 return null;
 }

REFERENCES

VOL. 1, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 145

 }
 public int lastIndexOf(Student v0) {
 try {
 return vector.lastIndexOf(v0);
 catch (RemoteException e) {
 return null;
 }
 }
 public int lastIndexOf(Student v0,int v1) {
 try {
 return vector.lastIndexOf(v0,v1);
 catch (RemoteException e) {
 return null;
 }
 }
 public Student elementAt(int v0) {
 try {
 return (Student) vector.elementAt(v0);
 catch (RemoteException e) {
 return null;
 }
 }
 public Student firstElement() {
 try {
 return (Student) vector.firstElement();
 catch (RemoteException e) {
 return null;
 }
 }
 public Student lastElement() {
 try {
 return (Student)vector.lastElement();
 catch (RemoteException e) {
 return null;
 }
 }
 public void setElementAt(Student v0,int v1) {
 try {
 vector.setElementAt(v0,v1);
 }
 catch (RemoteException e) {
 }
 }
 public void removeElementAt(int v0) {
 try {
 vector.removeElementAt(v0);
 }
 catch (RemoteException e) {
 }
 }
 public void insertElementAt(Student v0,int v1) {

 CENTIJ: AN RMI CODE GENERATOR

146 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 5

 try {
 vector.insertElementAt(v0,v1);
 }
 catch (RemoteException e) {
 }
 }
 public void addElement(Student v0) {
 try {
 vector.addElement(v0);
 }
 catch (RemoteException e) {
 }
 }
 public boolean removeElement(Student v0) {
 try {
 return vector.removeElement(v0);
 catch (RemoteException e) {
 return null;
 }
 }
 public void removeAllElements() {
 try {
 vector.removeAllElements();
 }
 catch (RemoteException e) {
 }
 }

}

REFERENCES

VOL. 1, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 147

Appendix B Example of program generator invocation

In this section we describe an example of the Proxy class that is generated by the
DelegateSynthesizer and the ReflectUtil class. The effect is to alter the interface to the
delegates so that it is simpler to use, without having to change any of the existing code.
For example, in order to use the ReflectUtil and the DelegateSynthesizer in the past, we
would write:

 public static void main(String args[]) {
 DelegateSynthesizer ds = new DelegateSynthesizer();
 ReflectUtil ru = new ReflectUtil(ds);
 ds.add(new java.util.Vector());
 ds.process();
 System.out.println(
 ds.getClassString());
 }

Now we write:

 public static void main(String args[]) {
 Proxy p = new Proxy();
 p.add(new Vector());
 p.process();
 System.out.println(
 p.getClassString());
 }

The Proxy class contains all the methods of the ReflectUtil class and the
DelegateSynthsizer class, with a different constructor than either of the two delegates.
The constructor was coded by hand, and the class was renamed. Other than that, the code
output by:

 public static void main(String args[]) {
 DelegateSynthesizer ds = new DelegateSynthesizer();
 ReflectUtil ru = new ReflectUtil(ds);
 ds.add(ds);
 ds.add(ru);
 ds.process();
 System.out.println(
 ds.getClassString());
 }

was all that was required to construct the Proxy class. We are now able to get an
automatically generated interface, called the ProxyStub by executing:

 public static void main(String args[]) {

 CENTIJ: AN RMI CODE GENERATOR

148 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 5

 Proxy p = new Proxy();
 p.add(p);
 p.process();
 System.out.println(p.getInterfaces());
 }

This enables us to obtain the multiple-inheritance of typing that we would otherwise have
missed if we used only delegation. The Proxy class can now implement the ProxyStub. In
fact, the methods of any number of instances can be folded into a synthesized interface.
After the code has been generated, the RMI Compiler (RMIC) is invoked on the
synthesized code. Afterwards the class files are bundled into Java archives (JAR files)
which are distributed to various servers.

About the author

After receiving his Ph.D. from Rensselaer Polytechnic Institute, Dr.
Lyon worked at AT&T Bell Laboratories. He has also worked for the
Jet Propulsion Laboratory at the California Institute of Technology. He
is currently the Chairman of the Computer Engineering Department at
Fairfield University, a senior member of the IEEE and President of
DocJava, Inc., a small consulting firm in Connecticut.

	CentiJ: An RMI Code Generator
	Repository Citation
	Published Citation

	Microsoft Word - article2.doc

