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The Perfect bureaucrat is the man 
who manages to make no decisions  

and escapes all responsibility. 

– Justin Brooks Atkinson 

Summary 
The CentiJ system synthesizes Java source code that funnels invocations through an 
RMI (Remote Method Invocation) based transport layer for distributed computation. The 
technique generates bridge pattern code (i.e., interfaces and proxies) that automate the 
creation of virtual proxies for message forwarding.  
We examine the tradeoffs between bridge implementations based on manual static 
delegation, automatic static delegation, and dynamic proxy classes. Advantages of the 
CentiJ technique include improved performance, type safety, transparency,  
predictability, flexibility and reliability. 
We then look at various methods for solving the disambiguation problem that arises 
when delegates have conflicting method signatures. Disambiguation can be automatic, 
semi-automatic or manual. CentiJ  can automatically create a class that alters the 
interface to the bridge (using the adapter pattern). 

1 INTRODUCTION 

Java technology supports distributed computing on heterogeneous networks via a 
technology called RMI and CORBA [Lea] [Jennings]. To do this, RMI provides a 
communication framework for distributed computation in a remote address space. RMI is 
a de factor standard for communication between systems written in different languages 
[Slominski]. Sorry to say, use of the RMI technology often requires significant 
programmer effort and the writing of extra source code. The CentiJ project eases this 
programmer burden. 

CentiJ enables the remove invocation of existing, (i.e., legacy) code, without 
changing it. We funnel the communications through a bridge that is remotely invoked. 

http://www.jot.fm
http://www.jot.fm/issues/issue_2002_11/article2
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All the communications are encapsulated in the CentiJ generated code so that the 
CentiJ programmer does not need to modify the code (provided it uses the bridge 
interface). 

The contribution of CentiJ is that it reuses original implementations, without altering 
the source code and provides for a means of distributing the computations. CentiJ works 
for programs that were not written with distributed computation in mind.  

The RMI Problem  

The RMI problem can be broken down into two sub-problems. The first is called the 
legacy bridge problem. The second is called the virtual proxy synthesizer problem. 

The legacy bridge problem may be stated simply as follows, given a large number of 
methods in a variety of classes, find a single interface to these methods and an 
implementing class so that there is a reuse of the implementations in the existing (i.e., 
legacy code). We are subject to the constraint that we cannot change the existing code. 
Further we may not even have the existing source code. The legacy bridge problem is 
solved by building code that implements the bridge pattern. The bridge pattern consists 
of an interface, or protocol of communication and an implementation of the 
communication. Any network layer protocol can use a bridge pattern.  Legacy code is 
often fragile, hard to maintain, difficult to reverse engineer, unchangeable and sometimes 
poorly designed. Hence the constraint that we can not change the legacy code base. 
Subject to these constraints, CentiJ builds a bridge between new code and the legacy 
system. Thus providing a solution to the legacy bridge problem. 

The virtual proxy problem is the second sub-problem solved by CentiJ. With the 
virtual proxy, the goal is to method-forward to an existing implementation. CentiJ uses 
inputs from the legacy bridge problem and generates code that can be invoked on a 
remote address space. 

Thus, CentiJ solves the RMI problem by gathering the implementations of a set of 
classes and generating a virtual proxy.   

Motivation 

RMI code is typically written manually. This requires an extensive analysis of the 
existing code. Typically, a large number of dependencies between classes complicates the 
analysis [Korman]. The bridge pattern serves to regulate the communications between the 
legacy code and the new code. This regulation prevents changes from propagating to new 
code by holding the interface constant. 

CentiJ generates source code from a collection of classes so that the system has an 
improved internal structure but identical external behavior (i.e., the code is refactored, but 
existing source is left unchanged). Refactoring is a key approach for improving object-
oriented systems [Tichelaar]. Typical refactoring is performed by altering existing code. 
However, we are constrained from altering the legacy code and so CentiJ uses the bridge 
pattern as a means to leave the legacy code unchanged during refactoring. Some benefits 
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include: encapsulation of communication, location transparency, low cost of distributed 
programs and greater reliability in the generated code. 

Approach  

There are several ways to design a bridge. Figure 1 shows a simple bridge pattern that 
enables a stable, bridge interface to be referenced by an adapter. The adapter is, in turn, 
used by the client code.  
 

proxy code
<<uses>>

Legacy Code

Bridge Interface

Bridge Pattern

<<uses>>
Adapter

<<implements>>

<<implements>>
Adapter Interface

Client 
Code

<<uses>>

 
Figure 1. A Simple Bridge Pattern 

 
For example, the JDBC-ODBC bridge, enables Java classes to have access to a stable 
interface for executing structured query language (SQL). The implementation of JDBC-
ODBC bridge is often loaded dynamically and plays the role of the proxy code in 
Figure 1. The proxy code implements the bridge interface and delegates to the legacy 
relational database management system (RDBMS) for its implementation. 

CentiJ uses delegation to build the bridge code. The CentiJ program generator adds a 
new binding time. There are now three binding times to consider: 

1. Generation time: the time source code is output 
2. Compile time: when the synthesized code is compiled 
3. Run time: when the synthesized code is executed. [Cleaveland] 

If we try to combine steps 1, 2 and 3, we loose type safety (an important feature of CentiJ 
code). This is because we cannot know about interface types before the code is 
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synthesized and compiled. An alternate design (based in dynamic proxies) is discussed in 
Section 2.2. 

CentiJ’s program generator uses the reflection API. The reflection API enables 
running Java programs to discover information about types (i.e., classes and interfaces) at 
runtime. CentiJ not only leaves existing legacy code unmodified, the source code is not 
needed, since all the information needed to generate the RMI code can be obtained via 
reflection. 

Figure 2 shows the RMI architecture retrofitted with the bridge pattern shown in 
Figure 1. 

proxy code
<<uses>>

Legacy Code

Bridge Interface

Bridge Pattern

<<uses>>
Adapter

<<implements>>

<<implements>>
Adapter Interface

Client 
Code

<<uses>>

Registry

Remote side

client 
side

Transport 
Layer

<<uses>>
<<uses>>

 
Figure 2. RMI and the Bridge Pattern 

 
Figure 2 shows that the synthesized bridge code uses a registry in order to communicate 
its existence to the client. After the process of discovery (i.e., looking up the location of 
the server code) the client uses the network transport layer to communicate with the 
server. The registry acts as a broker, mapping reference to actual objects, registering and 
unregistering services. The RMI protocol supports a native SUN protocol as well as the 
Internet InterORB Protocol (IIOP) [Sun IIOP]. The client side of the RMI interface is 
called a stub. The server side of the RMI interface is called a skeleton. Invocation is 
generally unicast (i.e., point-to-point). 
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2 VARIOUS BRIDGE IMPLEMENTATIONS 

This section examines the various implementations of the bridge pattern. The alternatives 
are based in delegation. We describe the two types of delegation, dynamic and static. 
Dynamic delegation is delegation that is performed at run-time using dynamic class 
loading. Static delegation is delegation that is performed at compile time. CentiJ’s static 
delegation technique generates Java source code that must be compiled to be used.  

We show how dynamic delegation is easy to implement, but also represents a poor 
software engineering approach. We then examine static delegation as a sound software 
engineering practice. Finally we examine the two kinds of static delegation, manual and 
automatic. The automatic technique is a unique contribution of CentiJ. We show how 
automatic bridge synthesis eases the creation of proxy classes and interfaces. 

bridge 
implementations

inheritance

single multiple

delegation

dynamic static

automaticmanual  
Figure 3. Various Bridge Implementations 

 
Figure 3 shows the various bridge implementations that we will consider. While manual 
static delegation is the most common, type-safe implementation of a bridge, it is also the 
most labor intensive. The new mode of automatic static delegation alters the economics 
of static delegation so that it is both type-safe and low-cost. Bridges can also be built 
using inheritance. Sorry to say, inheritance methods for building bridges are difficult to 
implement for a single-inheritance type language (like Java). This is because classes that 
comply with the RMI framework typically subclass the UnicastRemoteObject as shown 
in Appendix A. 

What is Delegation?  

There is disagreement about what delegation is (and is not). According to one definition, 
delegation uses a receiving instance that forwards messages (or invocations) to its 
delegate(s). This is sometimes called a consultation [Kniesel]. This is the definition that 
we use in CentiJ. 

Variations on delegation give rise to several design patterns. For example, if 
methods are forwarded without change to the interface, then you have an example of the 
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proxy pattern. If you simplify the interface with a subset of methods to a set of delegates, 
then you have a facade pattern. If you compensate for changes (i.e., deprecations) in the 
delegates, and keep the client classes seeing the same contract, then you have the adapter 
pattern. If you add responsibilities to the proxy class, then you have the decorator pattern 
[Gamma 1995]. Thus, we define static delegation as compile-time, type-safe, message 
forwarding from a proxy class to some delegate(s).  

Compare this to the definition given by Lieberman [Lie 1986]. With Lieberman-
delegation (i.e., dynamic delegation) the communications pattern is decided at run-time. 
Thus, compile-time checks are not performed and the message forwarding is not type-
safe. In JDK1.3 dynamic delegation is more automatic (i.e., it is Lieberman-style). JDK 
1.3 can build a proxy object from the reflection API called a dynamic proxy class. 

Reflection enables a listing of methods and their signatures. These are used to 
forward invocations to the delegates contained by a proxy class.  I call this static proxy 
delegation, in order to differentiate it from the dynamic proxy classes that have been 
introduced in JDK 1.3 [Sun 2000]. 

CentiJ refactors code in a type-safe way, without altering it. It is well known that 
improper refactoring can break subtle properties in a system. As a result, refactoring is 
generally followed by a testing phase [Katoaka]. By using an automatic code generation 
technique CentiJ reduces the need for extensive testing.  

Before CentiJ, proxy classes were written manually using manual static delegation.  
In manual static delegation, an instance is passed to a proxy class as a parameter. A 
programmer writes wrapper code that delegates to the contained instance. The code that 
contains the wrapper code is called the proxy class. The code that contains the 
implementation code is called the delegate. For example: 

 
Final class Movable { 
      int x = 0; 
      int y = 0; 
 
      public void move(int _x, int _y) { 
         x = _x; 
         y = _y; 
      } 
} 

 
To add a feature to the Movable class we cannot subclass it, because the class is final. We 
might be tempted to modify the Movable class, however, source code might not be 
available. For example, suppose we want a MovableMammal: To leave the existing code 
unchanged, we use manual static delegation: 
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class Mammal { 
      public boolean isHairy() { 
         return true; 
      } 
} 

 
Our manually written delegation code follows: 
 

public class MovableMammal { 
      Mammal m; 
      Movable mm; 
 
      MovableMammal(Mammal _m, Movable _mm) { 
         m = _m; 
         mm = _mm; 
      } 
 
// this is message forwarding 
      public void move(int x, int y) { 
         mm.move(x,y);  
      } 
      public void isHairy() { 
         return m.isHairy(); 
      } 
} 

 
CentiJ generates proxy classes, like the MovableMammal class, automatically. It even 
defines an interface to the MovableMammal so that the protocol of communication to the 
MovableMammal will always meet a minimum requirement. CentiJ generates code (and 
resolves name collisions) using the reflection API and either topological sorting or a GUI 
for programmer direction. This enables the automatic generation of bridge interfaces to 
large numbers of methods in a variety of classes. For example, the following code was 
generated automatically: 
 

interface MammalMovableStub extends  
      MammalStub, MovableStub { 
} 
 interface MammalStub { 
      public boolean isHairy(); 
 } 
 interface MovableStub { 
      public void move(int v0,int v1); 
 } 
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While it is true that the MovableMammal is neither Movable nor a Mammal, it is equally 
valid to describe the MovableMammal as a new reference data type that has all the 
implementations of its delegates (Movable and Mammal). This delegation technique is 
different than one based in specialization, but it is more practical in a single-inheritance 
language. 

It has been asserted that refactoring must be language dependent because it must 
understand the language of the programs that it is manipulating. This is generally untrue 
since our system makes use of the reflection API and this API (or its equivalent) could be 
written for almost any language, in theory [Johnson].  

Dynamic Delegation vs. Static Delegation  

Delegation adds references to helper classes that can process the data, then delegate to the 
other classes for the implementation. Delegation has long been thought of as a 
generalization of inheritance (a point of view with which there is disagreement) [Aksit 
1991] [Bracha]. 
Delegation has the disadvantage that: 

1. The computational context must be passed to the delegate. 
2. There is no straightforward way for the delegate to refer back to the delegating 

object [Viega].  
3. The proxy class is coupled to the delegates. 

With JDK 1.3, there is a new technique called dynamic proxies [Sun 2000]. Dynamic 
proxies have all the disadvantages of delegation and: 

4. They are harder to understand than more static software. 
5. Dynamic delegation is slower than static delegation. 
6. The design has a counterintuitive class structure [Korman] 
7. Type-safe dynamic delegation is impossible [Kniesel 98]. 

Point 7 requires some discussion. Dynamic proxies can’t be compile-time checked for 
unresolved messages. In contrast, static delegation does provide compile-time checking 
of unresolved messages. This is a critical difference. Even inheritance will compile-time 
check unresolved messages. Thus, in the spectrum of type-safety, we have, in order of 
most-safe first: 

1. Static delegation 
2. Inheritance 
3. Dynamic proxy classes 

Inheritance is less type-safe than static delegation because shadowing is typically 
allowed, without warning, at compile time. Thus, some unexpected behavior can result. 
This raises the problem of disambiguation. 

CentiJ solves the problem of disambiguation by topological sorting or by using a 
GUI that requires selection from the methods with conflicting signatures. CentiJ used to 
output ambiguous code, allowing the programmer to resolve ambiguities at compile-time. 
The last technique was found unreliable since the programmer was performing an error-
prone activity. 
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Figure 4. The Disambiguation GUI 

Figure 4 shows the GUI presented to the programmer during the disambiguation process. 
Such a system runs counter to the delegation described by Kniesel. Kniesel has defined 
delegation as having automatic method forwarding (i.e., Lieberman delegation). We 
prefer to use the term dynamic delegation. The static method forwarding (which Kniesel 
says is not “true” delegation) is what I define as static delegation [Kniesel 99] [Kniesel 
01]. Static delegation is type-safe, dynamic delegation is not. The methods invoked 
remain the same, but the change in behavior comes from a change in implementation.  

Stroustrup tried an implementation of dynamic delegation in C++. He reported that 
every user of the delegation mechanism “suffered serious bugs and confusion”. He says 
that the primary reasons are that functions in the proxy do not override functions in the 
delegate and functions in the delegate can not get back to the proxy (i.e., the this is in a 
different context). Stroustrup mentions a solution, by manually forwarding a request to 
another object (i.e., static delegation) [Stro 1994]. 

The static delegation of CentiJ alters behavior in a type-safe way, at run-time, by 
using polymorphic delegates.  
Manual delegation has the disadvantage that: 

1. Tedious wrappers need to be written for each method. 
2. Manually writing forwarding methods is error-prone. 
3. Programmers write arbitrary code in a forwarding method. This can give an object 

inconsistent interface. 
4. Programmers must decide which message subset must be forwarded. 

Automatic proxy synthesis overcomes these problems: 
1. CentiJ does not generate arbitrary code. 
2. The interface to the instances remains consistent. 
3. The delegation is subject to in-line expansion and is more efficient than multiple 

inheritance or dynamic proxies 
4. The mechanism for forwarding is obvious and easy to understand. 
5. The proxy is coupled to the delegate in a more controlled manner than dynamic 

delegation. 
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6. Classes that use the proxy are presented with a stable bridge interface. 
7. CentiJ lowers the cost of software maintenance via automatic code generation. 

Problems that remain unsolved by CentiJ include: 
1. Lack of straightforward way for the delegate to refer back to the delegating object 

[Viega]. 
2. The computational context must still be passed to the delegate [Kniesel]. 
3. The proxy class is fragile. If the interface to the delegate changes, the forwarding 

method in the proxy must change [Kniesel 1998]. 
4. A new binding time is needed with static proxy delegation (automatic or manual).  

In comparison, dynamic proxy classes generate runtime errors, run slower and need no 
pre-compilation. We favor compile-time errors over runtime errors, and so find our 
technique superior in this regard. The trade-off is pay now or pay later.  

Semi-automatic synthesis of delegation code addresses the time-consuming and 
error-prone drawback of manual delegation. It is also easier to understand. The basic 
issue is that a balance must be struck between code reuse and the fragility that arises from 
coupling, a measure of component interdependency. This balance is obtained by good 
object-oriented design (and is hard to automate!). CentiJ uses the following Stroustrup-
suggested rules for code generation: 

1. Ambiguities are illegal. 
2. Only public methods are available 
3. The methods are all public in the proxy class. 
4. Subtyping is done with interfaces, not proxies. 
5. Both proxy classes and interfaces are synthesized automatically. 
6. Type checking is static. 
7. Ambiguity resolution is static (i.e., done at code synthesis time). 

CentiJ code, once compiled, never gets messages like “can’t find method” [Wand]. 
Appendix A and Appendix B show examples of automatically generated CentiJ code, and 
its use. 

Summary of findings 

We have reviewed different techniques for implementing the bridge pattern. We 
discussed using language extension to add delegation, language extension to add multiple 
inheritance, API extension to add delegation and API extension to add manual delegation. 
Approaches that use language extension fail for pragmatic reasons (lack of compatible 
tools, slow adoption, slow code, etc.). Approaches that use API extension are easier to 
deploy, in general, since they work with existing frameworks. 

Generally, inheritance enables shared behavior. Some have argued that subtyping 
(i.e, the multiple-inheritance of interfaces in Java) is not inheritance. In fact, the bridge 
pattern divorces specification from implementation.  
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single inheritance multiple inheritance
manual static 
delegation

automatic static 
delegation dynamic proxies

Subclasses must 
inherit only a single 
implementation from 
a super class.

Subclasses must 
inherit only a single 
implementation from 
a super class.

The computational 
context must be 
passed to the 
delegate.

The computational 
context must be 
passed to the 
delegate.

The computational 
context must be 
passed to the 
delegate.

Inheritance 
compromises the 
benefits of 
encapsulation [Coad].

The topological 
sorting of the super-
classes have been 
cited as a fruitful 
source of bugs 
[Arnold 1996].

There is no 
straightforward way 
for the delegate to 
refer back to the 
delegating object 
[Viega]. 

There is no 
straightforward way 
for the delegate to 
refer back to the 
delegating object 
[Viega]. 

There is no 
straightforward way 
for the delegate to 
refer back to the 
delegating object 
[Viega].

Inheritance 
hierarchy changes 
are unsafe [Snyder].

Inheritance 
compromises the 
benefits of 
encapsulation [Coad].

The proxy class is 
coupled to the 
delegates.

The proxy class is 
coupled to the 
delegates.

The proxy class is 
coupled to the 
delegates.

Conflicts between 
multiple parents are 
not reported. 
Ambiguity resolution 
has long been known 
as a problem with 
inheritance 
[Kniesel].

Inheritance 
hierarchy changes 
are unsafe [Snyder].

Tedious wrappers 
need to be written 
for each method.

The synthesis does 
not generate 
arbitrary code.

They are harder to 
understand than 
more static 
software.

Conflicts between 
multiple parents are 
not reported. 
Ambiguity resolution 
has long been known 
as a problem with 
inheritance 
[Kniesel].

Manually writing 
forwarding methods 
is error-prone.

The interface to the 
instances remains 
consistent.

Dynamic delegation 
is slower than static 
delegation.

Taxonomically 
organized data has 
become 
automatically 
associated with 
object-oriented 
programming 
[Cardelli].

Programmers write 
arbitrary code in a 
forwarding method. 
This can give an 
object an 
inconsistent 
interface.

The delegation is 
subject to in-line 
expansion and is 
more efficient than 
multiple inheritance.

The design has a 
counterintuitive 
class structure 
[Korman]

Java has no built in 
support for multiple 
inheritance

Programmers must 
decide which 
message subset must 
be forwarded.

The mechanism for 
forwarding is 
obvious and easy to 
understand.

Type-safe dynamic 
delegation is 
impossible [Kniesel 
98].

Extensions to the 
language are 
generally 
incompatible with 
legacy code

The compilation of 
generated code, is 
required 

Proxy is coupled to 
the delegate in a 
more controlled 
manner than 
automatic dynamic 
delegation.
Adapters possible

Lower the cost 
maintenance, 
improved reusability
The compilation of 
generated code, is 
required  

 
Figure 5. Summary of trade-offs 

Figure 5 shows the trade-off summary for implementing the bridge pattern. A comparison 
is made between the various kinds of delegation with the various kinds of specialization. 
There are two kinds of specialization, single-inheritance and multiple-inheritance. There 
are two basic kinds of delegation, dynamic and static. The dynamic delegation is slow 
and makes type-safety impossible. The static delegation is fast, and type-safe. There are 
two kinds of static delegation, manual and automatic. The manual delegation requires 
programmers write method-forwarding code, a process that is both error-prone and 



 
  CENTIJ: AN RMI CODE GENERATOR 
 
 
 

128 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 5 
 

tedious. The automatic-static delegation has been shown to be an easy-to-deploy 
technique that generates proxy classes that are both type-safe and easy to understand. 

3 RELATED WORK 

There are several projects that aim at making Java programs parallel. Once example is the 
Do! project [Launay]. The Do!  project does not use a static refactoring of the code to 
help with distrubutions instead it uses special kinds of distributed collections to explictly 
express concurrency. 

Another tool, Orca automated distribution decisions using a run-time system for 
placement and replication selection for remote jobs [Bal]. The Ninja project uses clusters 
of workstations, active proxies and low-level bytecode specialization for fine-grained 
parallelism. The Pangaea system uses a static source code analysis and a middleware 
back-end to distribute centralized Java programs. J-Orchestra takes the approach of fine-
grained automatic parallelism using byte-code output from the Java compiler. J-
Orchestra, Do!, Orca, Ninja and Pangaea do not attempt to perform any type of 
refactoring or code generation. Also they try to automate the decision for placing 
programs on other systems (a decision that is hard to automate). Their fine-grained 
approach to automating parallelism does not take into account the programmers’ input 
(which often stems from specialized knowledge about the problem domain and code 
structure).  [Tilevich] [Spiegel] [Spiegel 2000] [ Gribble]. 

Means of automating RMI are not new. JavaParty has been around for some time 
(see http://wwwipd.ira.uka.de/JavaParty/tour.html). However, it requires that the 
language be modified. Further, it does not gather instances to build bridges as CentiJ 
does. 

Tools for refactoring code automatically are not new [Opdy92b], [Opdy93a], 
[John93b] [Casais]. Language independent tools for refactoring code are not new either 
[Tichelaar]. Even the use of explicit and parametrical bindings to create type-safe 
inheritance is not new [Hauck]. Manual refactoring has long been recognized as an 
important component in extreme programming [Deursen]. All these refactoring 
techniques alter existing code, something CentiJ does not do. 

Other source-code based tools for automatic refactoring include the Smalltalk 
Refactoring Browser [Roberts], the IntelliJ Renamer (http://www.intellij.com), which 
supports renaming of identifiers and the Xref-Speller (http://www.xref-tech.com/speller/) 
which supports set refactorings. The Xref-Speller is based in emacs macros and serves to 
perform a cross-reference analysis. This is useful for the renaming feature, (and its ability 
to generate cross-linked html code). The Daikon invariant detector reads source code and 
depends on instrumentation of the source code for full function 
(http://sdg.lcs.mit.edu/~mernst/daikon/). None of the afore mentioned tools automate 
bridge synthesis. This is also true for the class composition proposed by Harrison and 
Ossher [Harrison].  

http://wwwipd.ira.uka.de/JavaParty/tour.html
http://www.intellij.com
http://www.xref-tech.com/speller/
http://sdg.lcs.mit.edu/~mernst/daikon/
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Casais has worked on automatic restructuring of the class hierarchy (by altering 
source code). The idea is that subclasses inherit everything from the superclasses. Also, 
CentiJ interfaces are used to capture information about the type hierarchy, not sub-
classes.   

Fanta and Rajlich have also worked on altering existing code, by moving functions 
around, expelling them from classes, refactoring properties and updating invocations to 
these elements. Moore has also worked on automatic refactoring and method 
restructuring. This work refactors expressions from methods. The Guru tool of Moore 
automatically refactors common code out of methods into abstract super-classes. For a 
programming language that lacks multiple inheritance (like Java) this effort can adversely 
affect how methods can be shared [Moore]. Casais claims that there may not be any case 
studies on the automatic reorganization of class hierarchies [Casais]. Thus, the question 
of how the code quality is changed by these systems remains open. 

Our technique for static delegation requires that every instance be passed to a proxy-
class, along with its execution context. Thus a programmer’s updates in the protocol for 
communicating the means to pass parameters will have to be updated in the proxy class. 
This is the solution I took in Java Digital Signal Processing [Lyon 1998].  

The CentiJ approach to automating the synthesis of bridge code is like the pre-
processor approach of the Jamie system used by [Viega]. A problem with Jamie is that it 
extends the language by creating a macro-preprocessor. Also, Jamie uses dynamic 
delegation.   

The LAVA language extends Java to provide for delegation.  Kniesel says that 
current implementations of LAVA have an efficiency that is unacceptable [Kniesel 98] 
[Kniesel 99]. In comparison, CentiJ is fast. In fact, with in-lining enabled, there is no 
performance degradation.  

Fisher and Mitchell provide a new delegation-based language [Fisher]. The primary 
advantage of the Fisher-Mitchell system is its ability to infer type, resolving method 
names at compile-time. Sorry to say, they had to devise a new language for this.  In 
comparison, CentiJ works by API extension, rather than by creating a new language. An 
API extension is easier to deploy into an existing environment than a new language. 

Delegation has been cited as a mechanism to obtain implementation inheritance via 
composition [Lie 1986], [Jz 1991]. Delegation was introduced in a prototype-based object 
model by Lieberman in 1986 [Lie 1986]. Lieberman indicated that delegation is 
considered safer than inheritance because it forces the programmer to select which 
method to use when identical methods are available in two delegate classes. Systems, like 
Kiev, extend the Java language so that it has multiple inheritance of implementation 
(http://www.forestro.com/kiev/kiev.html). Such language extensions are non-standard 
and unportable. 

Reverse engineering programs, such as Lackwit, are able to discover inheritance 
relationships with greater ease than composition associations [O’Callahan]. That is 

http://www.forestro.com/kiev/kiev.html
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because the inheritance association implies a specialization semantic. On the other hand, 
composition association scales better than signle inheritance.  

Message forwarding is an implementation sharing mechanism [Kniesel]. Experts 
have disagreed on this point, saying that delegation is a form of class-inheritance (since 
the execution context must be passed to the delegate). I take the opposite view, as class-
inheritance type of sharing of context involves name sharing, property sharing and 
method sharing. Sharing via delegation is instance sharing. The semantics of instance 
sharing enable a control of the coupling between instances. This provides a mechanism 
for reuse without introducing uncontrolled cohesion (which increases brittleness in the 
code) [Bardou]. Tim Lavers published a technique for automatically generating RMI 
source code [Lavers]. It is very close to what CentiJ presents except that it does not 
gather the instances to build a bridge class, and makes use of dynamic proxy invocation. 
Also, it creates the stubs and skeletons via a dynamic invocation of RMIC (which is 
generally unreliable, and non-portable, in our experience). The reliabilty issue is raised by 
making use of platform dependent invocations to the operating system (hard-coding 
pathnames in the process).  

In summary, all the refactoring systems reviewed in this section (except [Lavers]) 
not only need to read the source code, but they are like the Elbereth system in that they 
alter source code [Korman]. In the literature that we have reviewed, we have yet to find a 
means for automatically creating the bridges created by CentiJ. A macro system (or 
templates) would be a logical means of providing this ability, but, sorry to say, this would 
a require a modification of Java. 

Methods for automatically generating adapters are not new. In fact, C++ has had a 
template feature for years [Stroustrup 1991]. Sorry to say, Java has no template feature, 
and one is needed. In answer to this need Veldhuizen created a Java pre-processor called 
Lunar [Veldhuizen 2000]. The goal of Lunar, however, is to post-process the Java into C, 
for the purpose of optimization of computation. Volanschi et Al. extend the Java 
language to implement specialization classes, as did Viroli et Al. [Volanschi ] [Viroli ]. 
Meyers et Al. have also proposed extending Java in order to add “generics” in Java 
(another name for templates). Sun has taken up the task of modifying Java to add 
generics in a draft version of their compiler. The language feature is said to be the second 
most often asked for language extension of Java. Sorry to say, the draft and specification 
are held as proprietary to the Java developer connection, and therefore cannot be 
disclosed here. 

There are compelling arguments against altering the Java language in order to add 
generics. For one, it will make the language more complicated. Adding some API calls to 
generate source code is an easy to deploy technique and leaves Java compatible. Since 
Java is linked in runtime, templates will require code replication (like C++). This is just 
as easy to do with an API as it is with a pre-processor built into the compiler.  Naturally, 
the generated code would be faster if generics were included as a part of the JVM, but 
speed was never a design goal of the Java language (as far as I know). 

4 CONCLUSIONS   
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CentiJ does method forwarding across a transport layer in a manner invisible to the 
programmer. This helps to isolate client code from changes in the interfaces in the 
delegates. CentiJ can use a fully automatic system for resolving method ambiguity (via 
topological sorting). 

Delegation with static binding enables inlining of code. Thus static delegation does 
not suffer from the performance degradation of dynamic delegation.  
In brief: 

1. Dynamic delegation is more automatic than static delegation. 
2. Dynamic delegation is not type-safe, but static delegation is. 
3. Automatic static delegation is almost as automatic as dynamic delegation, and just 

as type safe as static delegation. 
The choice between static and dynamic delegation is a choice between safety and 
flexibility. [Agesen]. 

The following are some heuristics for the use of CentiJ: 
• If polymorphism is needed, then use the automatically generated interface stubs, 

that CentiJ provides. 
• If proxies are needed, then use CentiJ for generating proxies. 
• If source code is unavailable, there may be little other choice. 
• If source code is available, refactoring by hand may lead to better code, but may 

have an effect on a large number of client classes and require testing. 
• If many programmers require a stable interface, then use the automatically 

generated bridge. 
• In the case where the contracts shift in the delegates, allow the facade to become 

an adapter-facade-proxy, in order to protect the clients. 
Deepening subclasses in order to add features is a fast way to create poor code that is 
very fragile. It is a poor way to introduce sub-typing. Only use subclasses if the class 
theoretic approach is appropriate to the domain, and then only if the taxonomic hierarchy 
is unlikely to change. 

CentiJ decouples proxy delegation from subtyping. Benefits include: 
1. An upwardly compatible extension. 
2. Realistic performance. 
3. A practically useful tool. 
4. Inheritance restricted to subtypes only. 
5. Name collisions resolved by topological sorting or programmer interaction. 
6. No need for access to existing source code 

In brief, automatic program generation of proxy classes provides a new way to refactor 
legacy code and alters the economics of implementation reuse in single inheritance type 
languages.
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5 FUTURE WORK   

More work is required to quantify the improvement accomplished by CentiJ’s refactoring 
techniques. Metrics to quantify these improvements are elusive.  

A next step in automation is the selection of which instance should be remotely 
invoked. Currently, we need a programmer for this. At present, fully-automatic systems 
can not overcome the limits of gnoseology in order to improve on the epistemology. A 
semantic network may help. 

Casais claims that there may not be any case studies on the automatic reorganization 
of class hierarchies [Casais]. Thus, the question of how the code quality is changed by 
these systems remains open. 

When the communication between agents is based on a modified interface we create 
what has been termed a contract network protocol [Davis and Smith].  A contract 
network protocol  helps to isolate a system from deprecations in the delegate methods. 
Sun’s repeated introduction of deprecation into its API’s has become epidemic. To 
determine if a contract network protocol could help keep these deprecations from 
propagating to exsiting code is a topic of future research. 

Given a registration mechanism (like the RMIRegistry) it should be possible to 
automate the program generation of the code for distributed computation. Of course a 
programmer will still be needed to decide where to segment the problem. 

Distributed computation on an unreliable network is an open problem. Also difficult 
is to determine how to dynamically load balance the computations across such a network. 
We presently have a method for sorting machines by load and returning the least loaded 
machine from a list. Sorry to say, the method is based on a shell script and only works for 
Unix machines. This should be replaced by dynamically benchmarking the speed of a 
loaded JVM. 
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Appendix A  RMI Synthesis  

This section shows how RMI code is synthesized by CentiJ. The basic idea is that CentiJ  
must provide the bridge code with support for a transport layer protocol for remote 
invocation.  

Before CentiJ a programmer “manually” created an adapter that conforms to the 
requirements of the RMI framework. CentiJ provides an automatic alternative for manual 
adapter synthesis. In RMI a remote object is one whose methods can be invoked from 
another Java Virtual Machine (JVM). Often, this is on a different host. An object of this 
type is describe by one or more remote interfaces. A remote interface subclasses the 
java.rmi.Remote interface. All methods in the subclass must throw a 
java.rmi.remoteException in its throws clause. As a simple server example, consider the 
TimeServer. The interface to the TimeServer extends the java.rmi.Remote interface, and 
all the methods throw java.rmi.RemoteException instances: 

 
public interface TimeServerInterface extends java.rmi.Remote{ 
      String getTime() throws java.rmi.RemoteException; 
} 

The implementation of the TimeServerInterface, called the TimeServer, must subclass the 
UnicastRemoteObject. This means that it cannot subclass any other classes. This is 
because Java lacks multiple inheritance. Therefore the TimeServer must either provide 
implementations in its own method bodies or select those implementations via 
delegation. 
 

public class TimeServer extends UnicastRemoteObject 
      implements TimeServerInterface{ 
 
      private String name; 
       
      public TimeServer(String s) throws RemoteException{ 
         super(); 
         name=s; 
      } 
       
      public String getTime() throws RemoteException{ 
         Date time=new Date(); 
         return time.toString(); 
      } 
       
      public static void main(String args[]){ 
         System.setSecurityManager(new RMISecurityManager()); 
          
         try{ 
           TimeServer obj=new TimeServer("TimeServer"); 
            //Create the registry  
            // and bind the Server class to the registry   
            LocateRegistry.createRegistry(1099);  
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            Registry r= LocateRegistry.getRegistry(); 
            r.bind("TimeServer", obj); 
            System.out.println("TimeServer bound in registry"); 
         }catch(Exception e){ 
            System.out.println("Error: "+e.getMessage()); 
            e.printStackTrace(); 
         } 
      }    
} 
 

Now for the client: 
 

import java.rmi.*; 
import java.rmi.registry.*; 
import java.net.URL; 
import java.util.Date; 
 
public class TimeClient { 
 
      String ip = "192.168.1.95"; 
 
   public void run(){ 
          
         try{ 
            Registry r = LocateRegistry.getRegistry(ip); 

         TimeServerInterface  
 obj=(TimeServerInterface)r.lookup("TimeServer"); 
 

            System.out.println("remote time="+obj.getTime()); 
         }catch (Exception e){ 
            System.out.println("Error: "+e.getMessage()); 
            e.printStackTrace(); 
         } 
         localTime=(new Date()).toString(); 
 
    } 
 
      public static void main(String args[]){ 
         TimeClient t= new TimeClient(); 
         t.run(); 
      } 
 

Consider how much extra work it took the programmer to generate the above code. 
CentiJ automates the generation of the above code so that the bridges are adapted to the 
RMI framework automatically.  

For example, the RMI synthesizer created a container of Student elements, based on 
the Vector class. A  new interface substitutes the Student class for the java.lang.Object, 
thus requiring that all elements stored in the Vector delegate be of Student type: 
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interface StudentVectorstub extends Remote { 
      public static final String className = “StudentVector”; 
      public java.lang.String toString() throws 
        RemoteException; 
      public void copyInto(Student[] v0) throws 
        RemoteException; 
      public void trimToSize() throws RemoteException; 
      public void ensureCapacity(int v0) throws 
        RemoteException; 
      public void setSize(int v0) throws RemoteException; 
      public int capacity() throws RemoteException; 
      public int size() throws RemoteException; 
      public boolean isEmpty() throws RemoteException; 
      public java.util.Enumeration elements() throws 
        RemoteException; 
      public boolean contains(Student v0) throws 
        RemoteException; 
      public int indexOf(Student v0) throws RemoteException; 
      public int indexOf(Student v0,int v1) throws 
        RemoteException; 
      public int lastIndexOf(Student v0) throws 
        RemoteException; 
      public int lastIndexOf(Student v0,int v1) throws 
        RemoteException; 
      public Student elementAt(int v0) throws RemoteException; 
      public Student firstElement() throws RemoteException; 
      public Student lastElement() throws RemoteException; 
      public void setElementAt(Student v0,int v1) throws 
        RemoteException; 
      public void removeElementAt(int v0) throws 
        RemoteException; 
      public void insertElementAt(Student v0,int v1) throws 
        RemoteException; 
      public void addElement(Student v0) throws 
        RemoteException; 
      public boolean removeElement(Student v0) throws 
        RemoteException; 
      public void removeAllElements() throws RemoteException; 
} 
 

Based on the pattern of the Vector class, the interface was altered at program generation 
time make the input and output be Student elements, rather than Object elements (i.e., this 
is a bridge + an adapter). Sometimes called parametric polymorphism [Viroli],  altering 
the interface so that all the methods throw a RemoteException we adapt the class to the 
RMI framework. However, this means extensive wrappering is needed in the delegate. 
This is easy, and automatic, with CentiJ. 

In the following example, we reuse the implementation of the Vector class to create a 
type-safe interface. To generate the interface of the adapter, the synthesizer performs a 
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class substitution that searches for references to java.lang.Object types and replaces them 
with Student types. The implementation of the Adapter interface (i.e., StudentVectorstub) 
follows: 

 
// automatically generated by the RMISynthesizer 
public class StudentVector extends UnicastRemoteObject 
implements StudentVectorStub { 
 
// constructor:  
public StudentVector (){ 
         try{ 
            //Create the registry  
            // and bind the Server class to the registry   
            LocateRegistry.createRegistry(1099);  
            Registry r= LocateRegistry.getRegistry(); 
            r.bind(StudentVectorstub.className, obj); 
         }catch(Exception e){ 
            System.out.println("Error: "+e.getMessage()); 
            e.printStackTrace(); 
         } 
} 
 
private java.util.Vector vector = new java.util.Vector(); 
     public java.lang.String toString() throws RemoteException { 
          return vector.toString(); 
     } 
     public void copyInto(Student[] v0) throws RemoteException { 
          vector.copyInto(v0); 
     } 
     public void trimToSize() throws RemoteException { 
          vector.trimToSize(); 
     } 
     public void ensureCapacity(int v0) throws RemoteException { 
          vector.ensureCapacity(v0); 
     } 
     public void setSize(int v0) throws RemoteException { 
          vector.setSize(v0); 
     } 
     public int capacity() throws RemoteException { 
          return vector.capacity(); 
     } 
     public int size() throws RemoteException { 
          return vector.size(); 
     } 
     public boolean isEmpty() throws RemoteException { 
          return vector.isEmpty(); 
     } 
     public java.util.Enumeration elements() throws  
             RemoteException { 
          return vector.elements(); 
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     } 
     public boolean contains(Student v0) throws RemoteException { 
          return vector.contains(v0); 
     } 
     public int indexOf(Student v0) throws RemoteException { 
          return vector.indexOf(v0); 
     } 
     public int indexOf(Student v0,int v1) throws RemoteException { 
          return vector.indexOf(v0,v1); 
     } 
     public int lastIndexOf(Student v0) throws RemoteException { 
          return vector.lastIndexOf(v0); 
     } 
     public int lastIndexOf(Student v0,int v1) throws  
             RemoteException { 
          return vector.lastIndexOf(v0,v1); 
     } 
     public Student elementAt(int v0) throws RemoteException { 
          return (Student ) vector.elementAt(v0); 
     } 
     public Student firstElement() throws RemoteException { 
          return (Student ) vector.firstElement(); 
     } 
     public Student lastElement() throws RemoteException { 
          return (Student )vector.lastElement(); 
     } 
     public void setElementAt(Student v0,int v1) throws  
             RemoteException { 
          vector.setElementAt(v0,v1); 
     } 
     public void removeElementAt(int v0) throws RemoteException { 
          vector.removeElementAt(v0); 
     } 
     public void insertElementAt(Student v0,int v1) throws  
             RemoteException { 
          vector.insertElementAt(v0,v1); 
     } 
     public void addElement(Student v0) throws RemoteException { 
          vector.addElement(v0); 
     } 
     public boolean removeElement(Student v0) throws  
             RemoteException { 
          return vector.removeElement(v0); 
     } 
     public void removeAllElements() throws RemoteException { 
          vector.removeAllElements(); 
     } 
} 
 

It is a simple matter to obtain the StudentVectorClient by passing the stub directly to the 
client software. However, every method in the proxy throws the RemoteException. As a 
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result, we wrapper the delegation to handle the exceptions locally. The assumption is that 
after the initial construction there should not be any RemoteException instances thrown. 
This is justifiable only if the internet connection is reliable. This assumption is valid for 
our networks. Distributed computation on an unreliable network is an open problem. 
 

public class StudentVectorProxy { 
      private StudentVectorStub vector = null; 
      public StudentVectorProxy(String ip) { 
         try { 
            Registry r = LocateRegistry.getRegistry(ip); 
            vector = 
               (StudentVectorStub ) 
                  r.lookup(StudentVectorstub.className); 
         } catch(Exception e) { 
            System.out.println("Error: "+e.getMessage()); 
            e.printStackTrace(); 
         } 
      } 
      public java.lang.String toString() { 
                 try { 
                  return vector.toString(); 
                 catch (RemoteException e) {  
                  return null; 
                } 
      } 
      public void copyInto(Student[] v0) { 
                try { 
                  vector.copyInto(v0); 
                } 
                catch (RemoteException e) { 
                } 
      } 
      public void trimToSize() { 
                try { 
                  vector.trimToSize(); 
                } 
                catch (RemoteException e) { 
                } 
      } 
      public void ensureCapacity(int v0) { 
                try { 
                  vector.ensureCapacity(v0); 
                } 
                catch (RemoteException e) { 
                } 
      } 
      public void setSize(int v0) { 
                try { 
                  vector.setSize(v0); 
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                } 
                catch (RemoteException e) { 
                } 
      } 
      public int capacity() { 
         try { 
                  return vector.capacity(); 
                catch (RemoteException e) {  
                  return null; 
                } 
      } 
      public int size() { 
         try { 
                  return vector.size(); 
                catch (RemoteException e) {  
                  return null; 
                } 
      } 
      public boolean isEmpty() { 
         try { 
                  return vector.isEmpty(); 
                catch (RemoteException e) {  
                  return null; 
                } 
      } 
      public java.util.Enumeration elements() { 
         try { 
                  return vector.elements(); 
                catch (RemoteException e) {  
                  return null; 
                } 
      } 
      public boolean contains(Student v0) { 
         try { 
                  return vector.contains(v0); 
                catch (RemoteException e) {  
                  return null; 
                } 
      } 
      public int indexOf(Student v0) { 
         try { 
                  return vector.indexOf(v0); 
                catch (RemoteException e) {  
                  return null; 
                } 
      } 
      public int indexOf(Student v0,int v1) { 
         try { 
                  return vector.indexOf(v0,v1); 
                catch (RemoteException e) {  
                  return null; 
                } 
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      } 
      public int lastIndexOf(Student v0) { 
         try { 
                  return vector.lastIndexOf(v0); 
                catch (RemoteException e) {  
                  return null; 
                } 
      } 
      public int lastIndexOf(Student v0,int v1) { 
         try { 
                  return vector.lastIndexOf(v0,v1); 
                catch (RemoteException e) {  
                  return null; 
                } 
      } 
      public Student elementAt(int v0) { 
         try { 
                  return (Student ) vector.elementAt(v0); 
                catch (RemoteException e) {  
                  return null; 
                } 
      } 
      public Student firstElement() { 
         try { 
                  return (Student ) vector.firstElement(); 
                catch (RemoteException e) {  
                  return null; 
                } 
      } 
      public Student lastElement() { 
         try { 
                  return (Student )vector.lastElement(); 
                catch (RemoteException e) {  
                  return null; 
                } 
      } 
      public void setElementAt(Student v0,int v1) { 
                try { 
                  vector.setElementAt(v0,v1); 
                } 
                catch (RemoteException e) { 
                } 
      } 
      public void removeElementAt(int v0) { 
                try { 
                  vector.removeElementAt(v0); 
                } 
                catch (RemoteException e) { 
                } 
      } 
      public void insertElementAt(Student v0,int v1) { 



 
  CENTIJ: AN RMI CODE GENERATOR 
 
 
 

146 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 5 
 

                try { 
                  vector.insertElementAt(v0,v1); 
                } 
                catch (RemoteException e) { 
                } 
      } 
      public void addElement(Student v0) { 
                try { 
                  vector.addElement(v0); 
                } 
                catch (RemoteException e) { 
                } 
      } 
      public boolean removeElement(Student v0) { 
         try { 
                  return vector.removeElement(v0); 
                catch (RemoteException e) {  
                  return null; 
                } 
      } 
      public void removeAllElements() { 
                try { 
                  vector.removeAllElements(); 
                } 
                catch (RemoteException e) { 
                } 
      } 
 
} 
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Appendix B Example of program generator invocation 

In this section we describe an example of the Proxy class that is generated by the 
DelegateSynthesizer and the ReflectUtil class. The effect is to alter the interface to the 
delegates so that it is simpler to use, without having to change any of the existing code. 
For example, in order to use the ReflectUtil and the DelegateSynthesizer in the past, we 
would write: 
 

      public static void main(String args[]) { 
         DelegateSynthesizer ds = new DelegateSynthesizer(); 
         ReflectUtil ru = new ReflectUtil(ds); 
         ds.add(new java.util.Vector()); 
         ds.process(); 
         System.out.println( 
            ds.getClassString()); 
      } 
 

Now we write: 
 

      public static void main(String args[]) { 
         Proxy p = new Proxy(); 
         p.add(new Vector()); 
         p.process(); 
         System.out.println( 
            p.getClassString()); 
      } 
 

The Proxy class contains all the methods of the ReflectUtil class and the 
DelegateSynthsizer class, with a different constructor than either of the two delegates. 
The constructor was coded by hand, and the class was renamed. Other than that, the code 
output by: 
 

      public static void main(String args[]) { 
         DelegateSynthesizer ds = new DelegateSynthesizer(); 
         ReflectUtil ru = new ReflectUtil(ds); 
         ds.add(ds); 
         ds.add(ru); 
         ds.process(); 
         System.out.println( 
            ds.getClassString()); 
      } 
 

was all that was required to construct the Proxy class. We are now able to get an 
automatically generated interface, called the ProxyStub by executing: 

      public static void main(String args[]) { 
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         Proxy p = new Proxy(); 
         p.add(p); 
         p.process(); 
         System.out.println(p.getInterfaces()); 
      } 

 
This enables us to obtain the multiple-inheritance of typing that we would otherwise have 
missed if we used only delegation. The Proxy class can now implement the ProxyStub. In 
fact, the methods of any number of instances can be folded into a synthesized interface. 
After the code has been generated, the RMI Compiler (RMIC) is invoked on the 
synthesized code. Afterwards the class files are bundled into Java archives (JAR files) 
which are distributed to various servers.  
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