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Abstract 
 
The syntheses and detailed characterizations (X-ray crystallography, NMR 

spectroscopy, cyclic voltammetry, infrared spectroscopy, electrospray mass 

spectrometry, and elemental analyses) of two new Cu(I) pincer complexes are 

reported.  The pincer ligand coordinates through one nitrogen and two sulfur donor 

atoms and is based on bis-imidazole or bis-triazole precursors.  These tridentate SNS 

ligands incorporate pyridine and thione-substituted imidazole or triazole 

functionalities with connecting methylene units that provide flexibility to the ligand 

backbone and enable high bite-angle binding.  Variable temperature 1H NMR analysis 

of these complexes and of a similar zinc(II) SNS system shows that all are fluxional in 

solution and permits the determination of ΔGexp‡ and ΔSexp‡.  DFT calculations are 

used to model the fluxionality of these complexes and indicate that a coordinating 

solvent molecule can promote hemilability of the SNS ligand by lowering the energy 

barrier involved in the partial rotation of the methylene units. 

 

Keywords: tridentate Cu(I) SNS pincer complexes; solvent-induced hemilability; 
density functional calculations; transition state analysis; variable temperature NMR 
spectroscopy 
  



 3 

Introduction 
 

Pincers, three-coordinate ligands that generally bind to metal centers in a 

meridional fashion, have been the focus of considerable study over recent decades.[1]  

With three points of attachment to a central metal atom, metal-bound pincers possess 

a particular robustness that has permitted their use across a broad range of reaction 

conditions.  Of particular interest has been their applicability as a catalyst for the 

generation of substituted alkenes via, for example, the Heck reaction as well as 

hydrogenations and dehydrogenations.[2, 3, and references therein]  A great deal of 

tunability of these complexes has been explored given the wide range of metal centers 

that are available and ligand backbones that can be designed.  Pincers can be 

constructed using a variety of organic precursors that permit these ligands to bind to 

the metal center via a range of donor atoms (usually C, O, N, P, or S) and to be 

electronically and structurally modified through the inclusion of aromatic 

substituents and bulky and/or chiral groups. 

The fine-tuning that can be accomplished through the use of the various 

structural modifications within the ligand can, in general, be reasonably assumed to 

affect the reactivity of pincer-bound complexes.  We focus here on two specific 

properties, the fluxionality and hemilability of the pincer ligand.[4]  The fluxional 

behavior of a metal-bound system can be adjusted through appropriate design of the 

pincer.  Inclusion of alkyl linker chains that bridge the donor atom-containing 

functionalities in the pincer has been shown to increase this internal fluxionality, the 

thermodynamics of which can be understood via temperature-dependent NMR.[5-

12]  Additionally, it is possible for at least one of the three metal-pincer bonds to be 
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weakened significantly or broken as a result of displacement by some external donor.  

Such a characteristic has been termed hemilability. [13]  For pincers, the detachment 

of just one of the three coordinating groups generally does not lead to the 

decomposition of the entire complex given that the displaced donor atom, still 

connected to the system via the pincer backbone, remains nearby.  Such hemilability 

has been shown to be critical in determining the catalytic efficiency of a Ni(II)-bound 

NNN pincer complex used to catalyze a Sonogashira coupling.[14] 

Of particular note is a study by Crabtree and co-workers who have described 

the impact not only of intraligand design modifications but also of counteranions on 

the fluxionality of a pincer-bound system on the NMR time scale. [12, 15]  These Pd(II) 

CCC (CCC = 𝜅 3-C,C´,C´´)(2,6-bis{[N-methyl-N´-methylene]imidazol-2-

ylidene}phenyl)) and Pd(II) CNC (CNC = ( 𝜅 3-C,C´,N)(2,6-bis{[N-methyl-N´-

methylene]imidazol-2-ylidene}pyridine)) pincer complexes are of the general 

formula [(CCC)Pd(XIS)] or [(CNC)Pd(XIS)][XOS] where XIS and XOS refer to inner sphere 

and outer sphere anions, respectively.  (eq. 1 and eq. 2)  The interconversion of the 

atropisomeric conformations was evidenced by the coalescence of the Ha and Hb 

methylene proton resonances on the NMR timeframe at relatively high temperatures 

and is believed to be caused by the stepwise partial side-to-side rotation of the 

individual methylene groups across the plane of the pincer ligand’s pyridinyl group.  

If, for example, such pincer complexes are to be employed as asymmetric catalysts, it 

is likely necessary to prevent this kind of interconversion.[15] 
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To understand this structural behavior, Crabtree and co-workers reported 

that different mechanisms may be involved in the interconversion of the Pd(II) pincer 

complexes and that in this specific case, the solvent did not appear to be a 

contributing factor.  When there is no outer sphere ion present (eq. 1) or there is a 

weakly nucleophilic counterion (XOS = OTs-) (eq. 2), the interconversion happens 

without any change in coordination number of the metal center.  When there is a 

nucleophilic outer sphere counteranion (XOS = Cl-, Br-, I-), this ion can displace the 

pyridine moiety of the CNC pincer complex to give a lower-energy pathway for the 

interconversion of the Pd(II) complexes.  In all cases for the Pd(II) systems, the 

presence of a [MXIS]-XOS  tight ion pair and not the availability of a nucleophilic solvent 

molecule were described as governing the activation energies for the fluxional 

process. 

As a result of our own interest in designing pincer-based transition metal 

compounds based on the various principles and factors described above, we have 
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investigated the use of neutral SNS-donor pincers with various late transition metals.  

Our current study focuses on the Cu(I)-bound systems 1 and 2 shown in Figure 1.   

These complexes possess a three-coordinate Cu(I) center with metal-ligand bonds 

solely between the copper atom and the SNS donor atoms.  The counterion is a non-

coordinating tetrafluroborate anion. 

 

 

Figure 1.  New copper(I) SNS pincer complexes prepared and studied in this report. 

 

Prior to the preparation of 1 and 2, we designed a series of zinc(II) complexes with 

the goal of developing a model for the catalytically active site in liver alcohol 

dehydrogenase [16,17] where there are two sulfur-donor cysteines and a nitrogen-

donor histidine.[18]  The uniting theme across our current and previous work is that 

these systems feature a pincer ligand that coordinates to the metal center via sulfur 

and nitrogen donor atoms.  The structural and electronic properties of our tridentate 

ligand can be easily modified through selection of the pyridine and azole starting 

materials.  For instance, the relative flexibility of the ligand precursor can be adjusted 

through the use of a haloalkyl-substituted pyridine.  Specifically, employing 2,6-

bis(bromomethyl)pyridine allows for the introduction of a methylene linker to 

connect the pyridine to the azole ring, thereby introducing a greater degree of 
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flexibility (Figure 2, 4a-c) into the pincer than if 2,6-dibromopyridine were used 

(Figure 2, 3a-c).  Using a triazole allows for further adjustment of the pincer’s 

structural and electronic properties (Figure 2, 5a-c). 

 

 

Figure 2.  Zinc(II) SNS pincer complexes previously synthesized and characterized. 

 

Following our work on these Zn(II) systems, we endeavored to extend the 

coordination chemistry and reactivity of our SNS pincer ligands by binding them to 

copper centers.  The result was our synthesis and characterization of a series of five-

coordinate copper(II) complexes (Figure 3, 6a-c) and three-coordinate copper(I) 

complexes (Figure 3, 7a-c and 8a-c).[19,20]  As was the case for the zinc compounds, 

the structures of the copper complexes were tuned through the use of methylene 

linkers connecting imidazole or triazole units to the pyridine rings. 

  
Figure 3. Copper(I)- and copper(II)-coordinated SNS pincer complexes previously 
synthesized and characterized. 
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Based on the solid-state structures we have obtained for the complexes given in 

Figure 3, we know that there are copper ions in both the cation and the counteranion 

for complexes 7a-c and 8a-c.  Replacing the [CuCl4]2- anion with a non-transition-

metal-containing and non-coordinating anion has led to the complexes that we report 

in our current study.   

We describe here the syntheses, single crystal structures, NMR 

characterizations, electrochemical characterizations, electrospray mass 

spectrometry, elemental analyses, and infrared spectroscopy analyses of 1 and 2.  In 

order to investigate and better understand the fluxional behavior of these complexes 

and the mechanism for interconversion, we performed variable temperature NMR 

experiments and DFT calculations on the complexes, which are reported in detail.  

This work extends our understanding of the fluxionality of Cu(I)- and Zn(II)-SNS 

pincer complexes and provides further insight into the work done previously to 

explore the similar behavior of Pd(II)-CNC systems. 

 

Experimental 
 
General Procedures 
 

Reagents and solvents were commercially available and were purchased from 

Acros Organics, and Fisher Scientific.  All chemicals were used as received. 

Isopropylimidazole and isopropyltriazole were prepared according to 

literature procedures.[21,22]  2,6-Bis(N-isopropyl-N’-methyleneimidazole)pyridine 

bromide, 2,6-bis(N-isopropyl-N’-methylenetriazole)pyridine bromide, 2,6-bis(N-

isopropyl-N’-methyleneimidazole-2-thione)pyridine (C19H25N5S2), and 2,6-bis(N-
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isopropyl-N’-methylenetriazole-2-thione)pyridine (C17H23N7S2) were prepared 

following literature procedures.[16] 

NMR spectra were recorded at 25°C (unless otherwise noted) on a Bruker 

spectrometer at 300 MHz or 400 MHz (1H NMR) or a 400 MHz JEOL spectrometer and 

75 MHz Bruker  (13C NMR) spectrometer and referenced to DMSO ( in ppm, J in Hz).   

All temperatures were corrected.[23]  The 1H, 13C{1H}, and HSQC NMR spectra are 

included in the supporting information section. 

Elemental analyses were performed by Robertson Microlit Laboratories 

(Ledgewood, NJ, USA).   Residual solvent molecules were identified by 1H NMR.  

Electrospray mass spectra were collected using a direct flow injection (injection 

volume = 5 uL) on an Agilent QTOF instrument in positive and negative ion mode.   

The optimized conditions were capillary = 3000 kV, cone = 10 V, source temperature 

= 120°C.  UV-visible spectra were collected on a Cary 100 UV-Visible Spectrometer.  

The IR spectra were collected using a Bruker-Tensor 27 FT-IR with an ATR accessory.  

The ESI-MS, UV-VIS, and ATR-IR spectra are included in the supporting information 

section. 

Cyclic voltammetry experiments were performed using a Gamry 

Electroanalytical System with a silver wire reference electrode, a glassy carbon 

working electrode, and a platinum counter electrode.  The supporting electrolyte for 

the cyclic voltammetry experiments was tetra-N-butylammonium tetrafluoroborate 

(0.20 M).  The solvent for the cyclic voltammetry experiments was dimethyl sulfoxide.  

The ferrocenium/ferrocene couple was used as an internal reference; reduction 

potential values were corrected by assigning the ferrocenium/ferrocene couple to 
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0.40 V versus SCE.   The concentration of the copper complex for the cyclic 

voltammetry was 2.08 mM for 1 and 2.04 mM for 2.  The solution was degassed with 

nitrogen before collecting cyclic voltammetry spectra.  The scan rates were 100 mV/s.  

The cyclic voltammograms are included in the supporting information section. 

Gaussian 09 was used to perform geometry optimizations on all structures 

presented in this report.[24]  The B3LYP hybrid functional and basis sets (6-

311G(d,p) for Cu and Zn and 6-31G(d) for H, C, N, S, and Cl) as provided with the 

software were used to perform the DFT calculations.  In all cases, a methyl group was 

used to represent the pendant group on the pincer ligand.  Symmetry was imposed 

on structures as indicated in the discussion.  Except in a few cases as described below, 

all calculations were performed on gas-phase structures without the use of any kind 

of continuum solvent model. 

Vibrational analyses were performed on the optimized structures to 

determine whether they represented minima or transition states.  As we have 

observed previously,[25] no or small imaginary frequencies (none more negative 

than -35 cm-1) were obtained for structures corresponding to ground-state minima.  

In the frequency analysis for structures representing transition state structures, a 

vibration at a more negative wavenumber (at or below -135 cm-1) was obtained for 

each structure.  The starting guesses for the transition state structures were 

constructed by imposing the fewest number of frozen structural parameters 

necessary to force the coplanarity of the methylene carbon atom and adjacent atoms 

in the pyridinyl and azolyl functionalities.  These structures were then optimized with 

the imposed constraints.  The Cartesian coordinates of all optimized structures 
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presented as well as the specific parameters used to freeze parts of the transition 

state molecular structures are provided in the supplementary information. 

 

Syntheses 

Synthesis of Bis-[(𝜅3-S,S,N)(2,6-bis){[N-isopropyl-N´-methylene]imidazole-1-ylidene-2-
thione} pyridine copper(I) tetrafluoroborate (1)  
 
In a 100mL round bottom flask, 0.217 g (5.60 x10-4 mol) of C19H25N5S2 was combined 

with 0.136 g (5.60 x 10-4 mol) of copper(II) tetrafluoroborate (Cu(BF4)2) and 

dissolved in 10. mL of acetonitrile. The solution was refluxed for 20 hours.  During the 

reaction time, the solution changed color from orange to dark brown. The following 

day, the solvent was removed under reduced pressure. Yield: 0.282 g (93.6 %). Olive 

green crystals for X-ray diffraction were grown by a slow vapor diffusion of diethyl 

ether into an acetonitrile solution containing the copper complex.  The mass of the 

titled product after recrystallization was 0.200 g (66.6 %). 

 

Anal. Calc. for C19H25CuN5S2BF4 (537.91):  C, 42.42; H, 4.68; N, 13.02.  Found:  C, 

42.25; H, 4.43; N, 12.95.   

 
High-resolution electrospray mass spectrometry (positive ion mode) m/z = 

450.09455 (molecular ion). 

High-resolution electrospray mass spectrometry (negative ion mode) m/z = 

87.01923 (molecular ion). 

 
1H NMR (DMSO-d6, 300 MHz)  8.24 (m, 1H, pyridine CH); 8.00 (m, 2H, pyridine CH); 

7.66 (m, 2H (J = 2 Hz), imidazole CH); 7.55 (m, 2H (J = 2 Hz), imidazole CH); 5.50 
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(broad s, 4H, CH2); 4.83 (septet, 2H, (3J=6.9 Hz), iPr-H); 1.41  (d, (3J=6.6 Hz),  12 H, iPr 

CH3).  

 

13C{1H} NMR (DMSO-d6, 75 MHz),  154.75; 153.37; 141.55 (pyridine CH); 126.06 

(pyridine CH); 119.98 (imidazole CH); 116.51 (imidazole CH); 51.96 (CH2); 50.06 

(H3CCHCH3); 21.30 (iPr CH3). 

 

UV-Visible data:  λ (nm), (ε (M-1cm-1):  309.00 (2360); 255.00 (2590); 243.00 (2740); 

238.00 (2.80 x 103); 233.00 (2680); 209.00 (2470). 

 

IR Data: ν (cm-1, intensity); 3176.26 (w); 3146.94 (w); 3107.57 (w); 2974.87 (w); 

1607.42 (m); 1570.00 (m); 1466.61 (m); 1451.44 (m);  1414.46 (w); 1376.52 (w); 

1321.97 (w); 1304.35 (m); 1278.42 (m); 1239.78 (m); 1230.43 (s); 1183.09 (m); 

1161.80 (w); 1130.71 (w); 1095.65 (w); 1040.82 (w); 943.81 (m); 917.36 (m); 876.69 

(m); 836.63 (m); 795.70 (w); 766.81 (m); 747.02 (m); 723.67 (w); 723.67 (w); 686.62 

(w); 660.96 (m); 643.16 (w); 636.11 (w); 582.93 (m); 560.13 (w); 523.31 (w); 501.57 

(w); 485.80 (w); 442.58 (w); 428.42 (w). 

 
Synthesis of Bis-[(𝜅3-S,S,N)(2,6-bis){[N-isopropyl-N´-methylene]triazole-2-thione} 
pyridine copper(I) tetrafluoroborate (2)  
 
In a 100mL round bottom flask, 0.134 g (3.44 x10-4 mol) of C17H23N7S2 was combined 

with 0.0824 g (3.47 x 10-4 mol) of copper(II) tetrafluoroborate (Cu(BF4)2) and 

dissolved in 15. mL of acetonitrile. The solution was refluxed for 20 hours.  During the 

reaction time, the solution became dark orange. The following day, the solvent was 
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removed under reduced pressure. Yield: 0.194 g (74.8 %). Pale yellow crystals for X-

ray diffraction were grown by a slow vapor diffusion of diethyl ether into an 

acetonitrile solution containing the copper complex.  The mass of the titled product 

after recrystallization was 0.097 g (52.2 %). 

 

Anal. Calc. for C17H23CuN7S2BF4 (539.89):  C, 37.82; H, 4.29; N, 18.16.  Found:  C, 

37.87; H, 4.08; N, 18.09.   

High-resolution electrospray mass spectrometry (positive ion mode) m/z = 

452.09699 (molecular ion). 

High-resolution electrospray mass spectrometry (negative ion mode) m/z = 

87.01856 (molecular ion). 

 

1H NMR (DMSO-d6, 300 MHz)   9.02 (s, 2H, triazole CH); 8.28 (m, 1H, pyridine CH); 

8.01 (m, 2H, pyridine CH); 5.55 (s, 4H, CH2); 4.93 (septet, 2H, 3J = 6.6 Hz, isopropyl 

H);  1.37 (d, (3J=6.6 Hz), 12 H, iPr CH3).  

 

13C {1H} NMR (DMSO-d6, 75 MHz),  159.25; 153.98; 142.28 (triazole CH); 141.59 

(pyridine para-CH); 126.43 (pyridine meta-CH); 51.18 (H3CCHCH3); 50.10 (CH2); 

20.61 (iPr CH3). 

 

UV-Visible data:  λ (nm), (ε (M-1cm-1):  278.00 (2360); 263.00 (2470); 249.00 (2.50 x 

103); 238.00 (2590); 231.00 (2530). 
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IR Data: ν (cm-1, intensity); 3142.45 (w); 3060.94 (w); 2983.29 (w); 2939.16 (w); 

1607.97 (w); 1577.61 (w); 1542.05 (m); 1485.20 (m); 1452.17 (m); 1432.16 (s); 

1389.24 (m); 1365.69 (m); 1343.60 (m); 1293.86 (m); 1276.68 (m); 1231.43 (m); 

1174.46 (s); 1130.08 (m); 1050.76 (m); 1016.71 (m); 915.70 (m); 876.85 (w); 840.23 

(s); 798.67 (m); 769.28 (m); 730.11 (m); 689.47 (m); 671.40 (m); 657.07 (m); 636.04 

(m); 593.85 (m); 538.84 (m); 522.80 (m); 507.14 (m); 488.12 (m); 434.80 (m). 

 

Crystallographic Analyses  
 

A crystal of 1 was mounted on a CryoLoop (Hampton Research) on a Rigaku 

Oxford diffraction diffractometer at Keene State College (Keene, NH). The crystal was 

kept at 293(2) K during data collection.  Crystallographic data were collected using 

1.54184 CuKα radiation.  Using Olex2,[26] the structure was solved with the 

ShelXT[27] structure solution program using intrinsic phasing and refined with the 

ShelXL[28] refinement package using Least Squares minimization.  The 

crystallographic and refinement data for 1 is listed in Table 1.  Full details of the X-

ray structure determination are in the CIF included as supporting information.  CCDC 

data set 1851599 contains the supplementary crystallographic information for this 

compound.  These data can be obtained free of charge from The Cambridge 

Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif. 

A pale yellow block-like crystal platelet of 2 with dimensions 0.12 x 0.14 x 0.21 

mm3 was secured to a Mitgen micromount using Paratone oil and single crystal X-ray 

diffraction data was collected using a Rigaku Oxford Diffraction Synergy-S X-ray 

diffractometer equipped with an ROD HyPix-600HE hybrid photon counting (HPC) 
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detector. Data was collected at 100 K using Mo Kα1 radiation (= 0.71073 Å).  A data 

collection strategy to ensure maximum data redundancy was determined using 

CrysAlisPro.[29] Data processing was done using CrysAlisPro and included a multi-scan 

absorption applied using the SCALE3 ABSPACK scaling algorithm.[30]  The crystal 

was processed as a two-component twin CrysAlisPro identified a small secondary 

component rotated after a rendering of the reflections in reciprocal space revealed 

periodicity indicative of a secondary component rotated by 180° around the c-axis.  

The data was refined as a 2-component twin. The two components are related by a 

180 degree rotation about the c* axis. The fractional volume contribution of the 

minor twin component was freely refined to a converged value of 0.2018(14).  The 

structure was solved using the hklf4 file via intrinsic phasing with ShelXT and final 

refinements with least squares minimization were completed using the hklf5 file via 

ShelXL in the Olex2 graphical user interface.[26-28]  The space group was 

unambiguously verified by PLATON.[31]  The final structural refinement included 

anisotropic temperature factors on all non-hydrogen atoms.  Hydrogen atoms were 

attached via the riding model at calculated positions using appropriate HFIX 

commands.  The crystallographic and refinement data for 2 is listed in Table 1.    Full 

details of the X-ray structure determination are in the CIF included as supporting 

information.  CCDC data set 1851600 contains the supplementary crystallographic 

information for this compound.  These data can be obtained free of charge from The 

Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif. 
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Table 1.  Crystallographic and Refinement Data for 1 and 2. 

Empirical Formula [C19H25CuN5S2][BF4] (1) [C17H23CuN7S2][BF4]  (2) 
Formula weight 537.91 539.89 
Temperature (K) 293(2) 100(2) 
Crystal System Monoclinic Triclinic  
Space Group  P21/c P-1 
a/Å 10.0395(3) 8.2774(5) 
b/Å 29.1532(5) 10.3763(7) 
c/ Å 9.2478(2) 13.7733(7) 
α/° 90 88.443(5) 

β/° 115.760(3) 79.655(5) 

γ/° 90 69.147(6) 

Volume/ Å3 2437.69(11) 1086.64(12) 
Z 4 2 
Density calc.  g/cm3 1.466 1.650 
μ/mm-1 3.287 1.252 

F(000) 1104.0 552.0 
Crystal size/mm3 0.18 x 0.14 x 0.12 0.21 x 0.14 x 0.12 
Radiation  CuKα (λ =1.54184) MoKα (λ =0.71073) 

2ϴ range for data collection/° 9.782 to 142.702 5.872 to 50.226 

Reflections collected 9790 5667 
Independent reflections 4647 [Rint=0.0237, 

Rsigma=0.0337] 
5677  
[Rint = 0.0295, Rsigma = 
0.0513] 

Data/restraints/parameters 4647/0/306 5677/0/294 
Goodness-of-fit on F2  1.039 1.114 
Final R indexes [I>=2σ(I)] R1=0.0455, wR2=0.1201 R1=0.0652, wR2=0.1745 
Final R indexes [all data] R1=0.0564, wR2=0.1279 R1=0.0687, wR2=0.1771 
Largest diff. peak/hole/e Å-3 0.99/-0.54 1.94/-0.74 
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Results and Discussion 
 

Syntheses and X-ray Crystallography 

The syntheses of 1 and 2 were accomplished by reacting an acetonitrile 

solution containing a bis-thione ligand precursor with copper(II) tetrafluoroborate 

(Cu(BF4)2) (Scheme 1).  The reaction happened at reflux temperature in the presence 

of air in good to excellent yield.  Single crystals of 1 and 2 were obtained by dissolving 

each compound in acetonitrile and allowing diethyl ether vapor to slowly diffuse into 

the solution.  In general, the complexes are soluble in acetonitrile, methanol, dimethyl 

sulfoxide, and dichloromethane. 

 

 
 

Scheme 1.  Preparation of complexes 1 and 2. 
 

 

The solid-state structures of 1 and 2 are shown in Figures 4 and 5, respectively.  

Both complexes feature pseudo-trigonal planar geometry about the copper(I) metal 

center with two sulfur and one nitrogen donor atoms coordinated to the copper(I) 

metal center.  Other three-coordinate copper complexes have been reported 

previously.[32-44]  In addition, both complexes feature a non-coordinated 

tetrafluoroborate counteranion.  The Cu-S and Cu-N bond lengths are almost identical 

in complexes 1 and 2.  The Cu-S bond lengths in 1 are 2.2253(8) and 2.2202(8) Å and 
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in 2 are 2.2150(15) and 2.2231(15) Å. The Cu-N bond length is 2.050(2) Å in 1 and 

2.008(5) Å in 2.  For 1 and 2, the Cu-N bond lengths are similar to those reported 

previously for three-coordinate copper(I) complexes with trigonal planar geometry. 

[39,40] 

The carbon-sulfur bond lengths, 1.712(3) Å and 1.706(3) Å in 1 and 1.703(6) 

Å and 1.687(5) Å in 2, are similar for the two complexes and are between what is 

normally associated with a C-S single bond (1.83 Å) and a C=S double bond (1.61 

Å).[45]  Furthermore, these carbon-sulfur bond distances are 0.02-0.04 Å shorter 

than reported by Lobana and co-workers for a thiophosphenyl-bound Cu(I) 

complex.[46]  We observed disorder in the tetrafluoroborate anion in 1, which has 

been observed previously.[47] 

 

 
 

 
 
Figure 4.   Solid-state structure of 1. All non-hydrogen atoms shown are depicted 
with 50% thermal contours. 
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The solid state structures of 1 and 2 show that the ligands are strongly 

puckered with the azole rings located on opposite sides of the pyridinyl ring, an 

orientation enforced by the methylene linkers.  The overall structure can therefore be 

considered as roughly possessing a two-fold axis of rotation that passes through the 

Cu center and the pyridinyl N atom.  In complex 1, the angle between the planes of 

the two imidazole rings is 36.5(1)°.  The angles between the planes containing the 

pyridine unit and each of the imidazole rings are 67.65(5)° and 69.6(1)°.  In complex 

1, the dihedral angles Cu(1A)-S(1A)-C(14A)-N(3A) and Cu(1A)-S(2A)-C(7A)-N(5A) 

are 41.9(3)° and 40.3(3)°, respectively.  In complex 2, the dihedral angles Cu(1)-S(1)-

C(7)-N(3) and Cu(1)-S(2)-C(13)-N(5) are -37.6(5)° and -36.6(5)°, respectively. 

 The methylene linkers allow for a high S-Cu-S bite angle of 124.38° and 

119.44° in 1 and 2, respectively.  These are unusually large values for a pincer 

complex [47,48] but they do act to satisfy a three-coordinate geometry at the metal 

center nicely, demonstrating the utility of these linkers to allow the pincer ligand to 

accommodate the binding preference of the metal center. 
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Figure 5.   Solid-state structure of 2. All non-hydrogen atoms shown are depicted 
with 50% thermal contours. 
 
 

NMR Spectroscopy 

 As part of our work, we endeavored to characterize these complexes via 1H, 

13C{1H}, and HSQC NMR spectroscopy.  In order to fully characterize the fluxionality 

of the protons in 1, 1H NMR spectra were acquired at various temperatures in MeCN-

d3 although several other solvents were investigated as described below.  Figure 6 

shows these spectra for 1 in MeCN-d3.  All of the individual 1H NMR spectra acquired 

are included in the supporting information section.  The methylene protons do exist 

as a pair of resonances at lower temperatures in MeCN-d3 but upon warming the 

resonances coalesce, thereby permitting the determination of ΔGexp‡.  The methylene 
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protons therefore appear to be swapping environments by way of some kind of 

fluxional process.   

 

Figure 6.  Variable temperature 1H NMR spectra for 1 in MeCN-d3. 

 

The 1H NMR spectra indicate the presence of residual water.  In general, the 

chemical shift for the water can vary depending on the temperature [49].  In the 1H 

NMR spectrum for 1, the residual water appears between  2.35 and  2.16 ppm.  

Regarding the presence of water, although the samples could have been recrystallized 

in anhydrous solvents it was generally difficult to exclude water due to the presence 

of trace amounts of water in the laboratory environment. 
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During this work, several other solvents were investigated with varying 

degrees of success.  The 1H NMR spectrum for 1 obtained at 298 K in DMSO-d6 

contains only a single broad methylene resonance at  5.50 ppm.  Given that the 

freezing point of DMSO-d6 is not much lower than this temperature, it was necessary 

to employ a solvent with a lower melting point than DMSO-d6 to collect data in which 

the Ha and Hb signals could be resolved from each other.  As for THF-d8, an insufficient 

amount of 1 dissolved in it.  When MeOD-d3 was used, exchange of the methylene 

protons of 1 with deuterium from the solvent was evident.  Attempts were also made 

to acquire the variable temperature spectra of 1 in CD2Cl2.  At 230 K, two AB doublets 

at  5.85 and 5.05 ppm, representing methylene resonances, were observed.  Upon 

warming to 303 K, the doublets broadened but did not coalesce.  At 303 K the 

methylene resonances were still separate from each other at  5.90 and  5.12, 

thereby preventing a determination of ΔGexp‡. 

Provided in Table 2 is a summary of the thermodynamic data for 1 as well as 

for the other experiments conducted as discussed below, including a determination 

of the change in free energy of the fluxional process (ΔGexp‡) using the line-broadening 

method described by Faller [50-52] and of the change in entropy (ΔSexp‡) calculated 

through construction of an Arrhenius plot (provided with the supplementary 

information for this article).  The rate constants were determined using a method 

described by Sandström. [53] 

Variable temperature 1H NMR data were collected for 1 at concentrations of 

0.0097 M and 0.0192 M in MeCN-d3.  In both cases, the line-shapes seen at 

temperatures below the coalescence temperature varied less than 7.0 Hz at these 
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different concentrations, consistent with a common mechanism causing the 

fluxionality at the two different concentrations. 

As with 1, various solvents were investigated for their usefulness in collecting 

variable temperature NMR data for 2.  In MeCN-d3 at 298 K, a sharp singlet for the 

methylene resonance was observed.  Upon cooling, the spectrum indicated a broader 

singlet for the methylene resonance but it was never possible to observe two separate 

methylene resonances for 2 in MeCN-d3 above 230 K, which is near the freezing point 

of this solvent.  The use of CDCl3 was also attempted, but the solution immediately 

turned red.  This color change was taken to be an indication that complex 2 

decomposed in this solvent; the decomposition of this product was not further 

investigated.  We also attempted to use THF-d8 but encountered the same solubility 

issue as with 1. 

Switching to CD2Cl2 proved to be more successful, permitting the observation 

of two resonances for the methylene protons at lower temperatures, but analysis was 

hampered by the partial overlap of solvent and methylene resonances in 2.    Variable 

temperature 1H NMR data for 2 at concentrations of 0.012 M and 0.025 M in CD2Cl2 

were obtained.  In both cases, the line-shapes seen at temperatures below the 

coalescence temperature varied less then 3.4 Hz at these different concentrations, 

consistent with a common mechanism causing the fluxionality at the two different 

concentrations.  However, the need to use CD2Cl2 as the NMR solvent for 2 means that 

a comparison of the fluxionality of 1 and 2 in the same solvent cannot be achieved.   

Lastly, we wondered if the choice of metal center had an effect on the 

fluxionality of the complexes, so we attempted to acquire variable temperature 1H 
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NMR spectra of bis-imidazole (4a) and bis-triazole (5a) SNS pincer zinc(II) complexes 

that we have previously prepared.[17]  As with 1 and 2, both of these Zn(II) systems 

contain methylene linkers between the pyridine and the azole rings of the pincer 

ligand.  Although we did not observe coalescence of the methylene proton signals for 

5a in MeCN-d3, we did observe coalescence at 266 K for 4a.  Variable temperature 1H 

NMR data for [(SNS)ZnCl][ZnCl3(OH2)] (4a) were obtained at concentrations of 

0.0075 and 0.01492 M in MeCN-d3.  We also attempted to use CD2Cl2 as the solvent 

for this experiment but were unable to dissolve enough of the compound to obtain 

data.  For 4a, there was a much broader line shape observed at the higher 

concentration compared to the lower concentration.   

 

Table 2.  Solvent, methylene proton signal coalescence temperature, and 
experimentally determined ΔS‡ and ΔG‡ for 1, 2, and 4a. 
 

Entry Complex Tcoal (K) 
ΔSexp‡  

(J/mol*K) 

ΔGexp‡  

(kJ/mol) 
Solvent 

1 1 266 -61  2 52  3 MeCN-d3 
2 1 > 303 N/A N/A CD2Cl2 

3 2 < 233 N/A N/A MeCN-d3 
4 2 298 -110  10 60  4 CD2Cl2 

5 4a 266 -40  10 51  4 MeCN-d3 
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Electrochemistry 

The cyclic voltammograms for 1 and 2 are included in the supporting 

information.  Table 3 summarizes the oxidation and reduction waves for these 

complexes at a scan rate of 100 mV/s.  All of the waves are irreversible.  We have 

already reported that the ligand precursor for 1 showed oxidation features at 976 and 

1339 mV [17].  We also reported previously that the ligand precursor for complex 2 

showed a single oxidation feature at 1178 mV [17].  For both systems, the oxidation 

and reduction waves are more complex than what we observed previously for the 

corresponding ligand precursors. 

 

Table 3.  Summary of oxidation and reduction data for 1 and 2. 

Complex Eox (mV) Ered (mV) Solvent 
1 881, 563, -417 -769, -1440 DMSO 

2 1370, 441, -453, -1830 
-441, -701, -1010, -1360, 

-1780, -1990 
DMSO 

 

 

Computational Study 

In order to gain a better understanding of the fluxionality that we observed for 

these complexes, we chose to use the Gaussian 09 software package to investigate a 

number of possible pathways so that we might propose a mechanism by which the 

methylene protons of the pincer can become equivalent to each other.  Keeping in 

mind the computational study undertaken previously by Miecznikowski and 
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coworkers[15], we believe that we have been able to develop a systematic 

explanation for our current study that is consistent with these prior results. 

 We started by taking advantage of the symmetry inherent in the cationic 

moieties of the Cu(I) complexes.  As can deduced from Figure 4, the Cu(I)-SNS cation 

has approximate C2 symmetry with one of the imidazole rings located on one side of 

the plane of the SNS atoms and the other imidazole ring located on the other side such 

that these two rings are related to each other via a C2 axis of rotation present along 

the Cu-N bond.  In our computational study, we have chosen to use a methyl group to 

represent the alkyl azole pendant functionality.  Modeling the Cu(I)-SNS cation with 

exact C2 symmetry has allowed us to determine the relative energies of two pathways 

depicted in Figure 7: one where the transition state is a flat molecule with C2v 

symmetry in which the bridging methylenes switch sides of the pyridinyl plane 

simultaneously (left side of Figure 7), and the other where there is a transition state 

that possesses C1 symmetry in which only one of the methylenes switches sides at a 

time (right side of Figure 7), thereby giving rise to a stepwise swap of methylene 

groups.  All of these structures are “gas phase” structures in which solvent effects, 

either through the use of a general solvent potential field or by addition of one or 

more explicit solvent molecules, are absent.  We performed a few calculations with 

just the generic solvent field turned on and, we found that the energies changed by 

~0.4 kJ/mol, a result similar to that obtained previously.[15] 

Although these two pathways do allow for the protons on one of the methylene 

bridges to become equivalent to those on the other methylene group, the calculated 

activation energies for the forward and reverse steps do not align with the 
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experimental data presented in Table 2.  In the “simultaneous-methylene-swap” 

mechanism, all four of the methylene protons become equivalent to each other in the 

C2v transition state structure.  In the “stepwise-methylene-swap” mechanism, the 

methylene protons swap equivalencies as the complex passes through the C2 ground 

state and the Cs intermediate.  In the former, the C2v transition state lies 232 kJ/mol 

above the C2 ground state; in the latter, the Cs transition state is located 100 kJ/mol 

above the C2 ground state and nearly as much above the Cs intermediate.  Both of 

these energy barriers are well above the 52 kJ/mol determined experimentally for 1.  

Examination of several parameters in the optimized structures of the transition states 

demonstrates why they are so relatively unstable.  Bond lengths and angles are 

indicated in Figure 7.  Flattening of the complex to reach the C2v transition state in the 

simultaneous-swap mechanism while maintaining the threefold SNS coordination 

sphere of the pincer requires a slight shortening of the Cu-S bonds, a considerable 

reduction in length of the Cu-N bond, and a significant hyperextension of both of the 

Cpyridinyl-Cmethylene-Nimidazolyl angles.  Flattening of only half of the structure to attain the 

C1 transition state gives rise to shorter Cu-S bonds, a longer Cu-N bond, and only one 

Cpyridinyl-Cmethylene-Nimidazolyl angle that has been hyperextended. 

 



 28 

 

Figure 7.  Comparison of the computationally determined solvent-free pathways in 
which one or both methylene groups swap sides of the SNS plane of the Cu(I)-
SNSimidazolyl model system. 
 

 We then chose to investigate the influence of a coordinating solvent molecule 

on the energetics of the fluxionality.  In Figure 8, on the left side of the figure is the 

same gas-phase C1 transition state of the stepwise-swap mechanism shown in Figure 

7.  On the right side of the figure is a reaction pathway in which the transition state 

includes an explicit acetonitrile molecule bound to the Cu(I) center.  Our optimization 

finds that this solvent molecule is strongly bound to the Cu metal center.  In fact, it is 

so strongly bound (Cu-NMeCN 1.98 Å) that it significantly displaces the Npyridinyl atom 

(Cu-Npyridinyl 2.23 Å) in the transition state.  For comparison, we note that the Cu-

Npyridinyl bond also lengthened albeit only to 2.17 Å in the analogous gas-phase non-

solvent-coordinated stepwise-swap mechanism shown in Figure 7.   

Binding of an acetonitrile molecule to the Cu(I) center allows the metal center 

to maintain a three-coordinate environment while simultaneously permitting the 
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pyridinyl group to rotate away from the Cu(I) center, resulting in a slightly more 

relaxed Cpyridinyl-Cmethylene-Nimidazolyl angle (128.9° vs. 131.4°) than when no solvent 

molecule is coordinated.  As a result of this relaxation, the acetonitrile-coordinated 

transition state is only 61.1 kJ/mol above the combined energies of the C2 ground 

state and an unbound acetonitrile molecule.  Given that the relative energy of the Cs 

intermediate is 15.5 kJ/mol above the C2 ground state, the solvated transition state is 

45.6 kJ/mol above the Cs intermediate.  Because the fluxionality proceeds in both 

directions, we note that the average of these two values (61.1 and 45.6 kJ/mol) is 53.4 

kJ/mol, which is remarkably close to the 52 kJ/mol found experimentally using NMR 

spectrometry with this solvent.   

Given this result, we propose that coordination of a molecule of acetonitrile to 

the Cu(I)-SNSimidazolyl system gives rise to hemilability of the SNS pincer ligand, 

allowing a significant displacement of the pyridinyl fragment that reduces the energy 

required to cause the atropisomeric interconversion of the methylene protons 

relative to an unsolvated system.  The negative ΔSexp

 
‡  (J/mol*K) value for 1, shown 

in Table 2, is consistent with the proposed associative-type mechanism.  The 

importance of considering and using explicit solvent molecules when they behave as 

coordinating ligands has been emphasized elsewhere and we recognize that the use 

of a single coordinating solvent molecule is just one step toward modeling a fully 

solvated system.[54]  Yet, we note the closeness of our computed transition state 

energy to what we have determined experimentally achieved through the 

incorporation of just one solvent molecule in our model. 
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Figure 8.  Comparison of the computationally determined stepwise-methylene-
swap pathways for the gas-phase and acetonitrile-coordinated Cu(I)-SNSimidazolyl 
model system. 
 

Having identified a plausible mechanism for the fluxionality of 1, we turned 

our attention to complex 2.  We first performed calculations similar to those for 1 in 

which the gas-phase simultaneous-swap and stepwise-swap mechanisms were 

investigated with no explicit solvent molecule bound to the metal center.  The 

energies of the transition states for these two pathways were determined to be 224 

kJ/mol and 95.8 kJ/mol, respectively, above the ground state C2-symmetric structure.  

As indicated in Table 2, the thermodynamic parameters could only be determined 

using variable temperature NMR data collected using CD2Cl2 as the solvent.  

Regarding the use of acetonitrile as a solvent, we wish to note that its behavior as a 

coordinating solvent is certainly the same as we have concluded for 1 given that we 

have found that coalescence of the methylene proton signals occurs below 230 K. As 

for CH2Cl2, it is known to be a very weakly coordinating solvent [55] and there are 
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instances where it has been shown to interact with metal centers.[56]  We therefore 

chose to attempt calculations in which dichloromethane is weakly bonded to the Cu 

center in the stepwise-swap interconversion mechanism.   

In performing the calculations with a relatively diffuse Cl basis set (6-

311+G(d,p)) employed on the solvent Cl atoms, we were able to bind one 

dichloromethane molecule to the Cu center via one of its Cl atoms, not both, to 

generate a stepwise-swap transition state that is 73.6 kJ/mol above the C2 ground 

state and 58.6 kJ/mol above the Cs intermediate.  The average of these steps is 66.1 

kJ/mol as indicated in Figure 9.  The Cu-Npyridinyl and Cu-Cl distances in the optimized 

transition state are 2.41 Å and 3.27 Å, respectively, both of which are longer than the 

Cu-Npyridinyl and Cu-NMeCN distances determined for 1.  We postulate that these longer 

distances mean that the Cu(I) center has a less stable coordination environment with 

2 in the weakly coordinating dichloromethane than with 1 in acetonitrile, as 

evidenced by the fact that the Gaussian- and experimentally determined transition 

state energies are higher for 2 in dichloromethane than for 1 in acetonitrile.   As was 

the case for 1, the negative ΔSexp‡  (J/mol*K) value for 2 is consistent with the 

proposed associative-type mechanism. 
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Figure 9.  Comparison of the computationally determined stepwise-methylene-swap 
pathways for the gas-phase and dichloromethane-coordinated Cu(I)-SNStriazolyl model 
system. 
 

Comparing our calculated ΔG‡ values with those determined experimentally, 

we note that our calculated value for 1 in acetonitrile differs by ca. 3% from the 

experimental value whereas that for 2 in dichloromethane differs by 13%.  The 

difference in quality between these results may be due to the difficulty in obtaining a 

computational result with a weakly binding solvent, but we also considered 

experimental factors as well.  All of the NMR spectra indicate the presence of water, 

so we chose to investigate the use of H2O as the coordinating solvent molecule in 

additional Gaussian calculations of the transition state (TS) energy.  The water 

molecule binds to the Cu(I) center in 2 in a fashion that is quite similar to acetonitrile 

with 1.  The average of the C2-TS and Cs-TS energy differences using H2O is calculated 

to be 43.5 kJ/mol.  Considering that the calculated transition state energy for the Cu-

SNS(triazolyl) system in dichloromethane is too high by about 8 kJ/mol, the 
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possibility that H2O is solvating some of 2 would bring the DFT-calculated value more 

in line with the observed experimental result.  In other words, perhaps the ΔG‡ value 

we have determined experimentally for 2 in dichloromethane is actually the result of 

CH2Cl2 solvating some of the molecules and H2O solvating others.  An additional 

contributing factor may also be solvation of the available lone pair on the N atom that 

is present in the triazolyl rings and not in the imidazolyl functionalities.  This 

interaction is not accounted for in our calculations. 

Given what we have concluded from our computational study of the Cu(I)-SNS 

pincer complexes, we wished to provide a plausible mechanism that explains the 

fluxionality for 4a.  Even before performing calculations analogous to those presented 

here for the Cu(I) systems, simple consideration of the four-coordinate pseudo-

tetrahedral environment at the Zn(II) center and the resulting overall molecular 

symmetry leads to the conclusion that the methylene protons cannot become 

equivalent by symmetry, even via the stepwise-methylene-swap mechanism.  The 

presence of the Zn-Cl bond means that a C2-symmetric structure is not possible at any 

point in the kind of fluxional mechanism that we have proposed for the Cu(I)-SNS 

systems.  We therefore opted to investigate two mechanisms computationally as 

described below.  

Our first consideration involved eliminating the chloride ion and attaching two 

acetonitrile molecules to the Zn(II) center.  In this scenario, the entire Zn(II) complex 

has a 2+ charge, the zinc center has a trigonal bipyramidal coordination sphere, and 

structures with C2 and Cs symmetry can be reached to allow the methylene protons 

to become equivalent during the fluxional process.  We have no experimental 
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evidence to support such a mechanism but we present it here to provide a direct 

structural comparison to our calculations for 1 and 2 where the methylene protons 

can become symmetry-equivalent.  The structures we determined computationally 

for such a pathway are shown in Figure 10.  In contrast to our results for the Cu(I) 

systems, we note that the Zn-Npyridinyl bond length does not lengthen appreciably, 

which we attribute to the relatively greater 2+ charge on the metal center.  In the 

transition state structure, the Zn-Npyridinyl bond length is a short 2.03Å, which 

constrains the motion of the methylene group and leads to a relatively large energy 

(ca. 100 kJ/mol) required to reach this structure. 

 

 
Figure 10.  Computationally determined fluxional pathway involving a five-
coordinate, bis(acetonitrile)-bound Zn(II) center with C2-and Cs-symmetric lower 
energy structures.  The Cl ligand has been lost to allow for the methylene protons to 
become equivalent by symmetry. 
 

Figure 11 shows an alternate mechanism in which the Zn-Cl bond remains 

intact throughout the fluxional process.  The total charge on the system is therefore 
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1+ and the pathway more closely resembles that proposed for the Cu(I) systems.  One 

equivalent of acetonitrile displaces the pyridinyl N atom in the transition state (Zn-

Npyridinyl 3.42 Å), maintaining a four-coordinate Zn center throughout with the 

acetonitrile molecule bound quite tightly (Zn-NMeCN 2.12 Å).  The transition state is an 

average of 59.2 kJ/mol above the lower energy structures, a value that is much more 

in line with what we observed experimentally. 

 Overall, we favor the mechanism provided in Figure 11, where the Zn-Cl bond 

remains intact, but it does raise a question about the need for the methylene protons 

to become perfectly equivalent by symmetry in order for the 1H NMR resonance to 

coalesce.  Regarding the pathway presented in Figure 10, it seems unlikely that the 

Zn-Cl would break to give a cation with a more positive charge.  In fact, for the Pd(II) 

CNC systems studied previously,[15] outright loss of the inner-sphere ion without 

replacement by an outer-sphere ion was not proposed to explain the fluxionality.  As 

for the mechanism in Figure 11, it shows that an acetonitrile molecule clearly 

displaces the pyridinyl group whereas the mechanism in Figure 10 actually shows the 

Zn-Npyridinyl bond getting shorter.  The pathway in Figure 11 is therefore more 

consistent with what we are proposing for the Cu-SNS systems.  The negative ΔSexp‡ 

found for this complex is also more in line with the mechanism shown in Figure 11 in 

which a solvent molecule associates with the metal center in the transition state 

whereas in Figure 10 there is no clear change in the Zn coordination sphere for this 

mechanism.  Further, an important outcome from this proposal is that symmetry does 

not need to be reached in order for the CH2 protons to become equivalent.  We 

conclude that the observed coalescence is a result of the nearly, but not perfectly, 
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equivalent environments of the methylene protons as the solvent displaces the 

pyridinyl moiety, causing the molecule to contort.   

 

 

Figure 11.  Computationally determined fluxional pathway involving a four-
coordinate acetonitrile-bound Zn(II) center and preservation of the Zn-Cl bond 
throughout. 
 

Lastly, we wish to compare the findings of our current work in light of those 

proposed previously for Pd(II) CNC pincer complexes.[15]  The general mechanistic 

pathway for the observed fluxionality involving the hemilability of the pincer’s 

pyridinyl group is similar for all of these systems.  We note that in both reports, the 

experimentally observed transition state energies are all found at ca. 50-70 kJ/mol, 

suggesting the possibility of a similar pathway in all instances.  For the palladium 

systems, the metal atom’s four-fold square planar coordination sphere was composed 

of the tridentate pincer ligand and an inner sphere anion (XIS).  To displace the 
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pyridine moiety, thereby providing a lower energy pathway for the methylene group 

to rotate to the opposite side of the plane pyridinyl group, it was proposed that an 

outer sphere anion (XOS) acts as a reasonably strong nucleophile and coordinates to 

the metal center via an associative substitution pathway.  This effect was described 

as “effectively intramolecular” within a [MXIS]-XOS tight ion pair in solution.  In our 

current work, the counteranions ([BF4]- for 1 and 2, [ZnCl3(OH2)]- for 4a) cannot be 

expected to be strongly nucleophilic.  In the absence of a coordinating anion, a solvent 

molecule can act as a nucleophile that binds to the Cu(I) and Zn(II) metal centers, 

displacing the pyridinyl group.  We even conclude here that a generally non-

coordinating solvent such as dichloromethane can also give rise to this effect.  For the 

Pd(II) systems the presence of the weakly coordinating tosylate XOS anion gave rise 

to relatively higher activation energies just as we observe and calculate here for the 

weakly coordinating dichloromethane. 

 Given our determination that the solvent is involved in displacing the pyridinyl 

group, we wish to comment specifically on the role of the solvent as it was described 

for the Pd(II) CNC fluxionality.  It was observed that the rate of the fluxional process 

for the palladium systems was independent of the solvent (CDCl3 vs. DMSO-d6)[12] 

except for [{CNC}Pd(OH2)][BF4]2 for which ΔG‡ was greater in CDCl3 (> 73 kJ/mol) 

than in DMSO-d6 (68.5 kJ/mol).[15]  This latter determination is in line with the 

general theme of our current findings.  Computationally, the previous report 

described examination of the effect on the activation energy by the solvent through 

the use of a continuum model with the conclusion that it had “very little effect on the 

energy pattern.”  Given the presence of both XIS and XOS for the Pd(II) systems, we can 
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understand how solvent would have relatively little effect given the expected greater 

attraction of the negatively charged XOS ion to the [{CNC}PdXIS]+ cation.  As described 

in the previous report, “the polarity of the solvent has little direct consequence on a 

fluxional process occurring within a [{CNC}PdXIS]XOS tight ion pair.”[15]  However, in 

the absence of such a coordinating outer sphere anion as we have in our current study, 

explicit inclusion of a solvent molecule rather than application of a solvation field 

without discrete solvent molecular units in the modeling calculations is necessary to 

fully describe the transition state structure. 

 

Conclusions 

We have reported herein the syntheses and detailed characterizations (X-ray 

crystallography, NMR spectroscopy, cyclic voltammetry, infrared spectroscopy, 

electrospray mass spectrometry, and elemental analyses) of tridentate pincer 

complexes that coordinate to copper(I) metal centers.  The copper(I) complexes have 

pseudo-trigonal planar geometry about the metal center and the relatively non-

coordinating tetrafluoroborate as a counteranion.  The pincer ligand, which contains 

pyridinyl and thione-substituted imidazole or triazole functionalities, coordinates to 

the copper(I) cation through the sulfur and nitrogen donor atoms of these groups. 

Our variable temperature 1H NMR studies show that our newly prepared 

copper(I) complexes are fluxional and have allowed us to determine ΔGexp‡ and ΔSexp‡ 

for this process.  To model the fluxionality, we have used Gaussian calculations to 

propose an associative mechanism that explains this behavior.  A solvent-induced 

hemilability of the SNS pincer’s pyridinyl group occurs whereas the Cu-S bonds 
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remain intact during the process.  Our Gaussian results are nicely consistent with our 

ΔGexp‡ and ΔSexp‡ values.  A coordinating solvent such as acetonitrile can displace the 

pyridinyl unit, providing the methylene groups that link the pincer’s pyridinyl and 

azole rings with a lower energy pathway by which they can rotate to the opposite side 

of the plane of the pyridinyl group.  This motion allows the methylene protons to 

become equivalent to each other resulting in the coalescence observed here for the 

Cu(I) systems and previously for Pd(II) CNC complexes.  For our Zn(II) complex, we 

propose that a similar fluxional pathway occurs although the methylene protons 

cannot become perfectly equivalent by symmetry due to the presence of the chloride 

ligand that is bound to the Zn(II) center.  In this case, we postulate that the 

environments of the methylene protons are similar enough during the fluxional 

pathway that their resonances also coalesce on the 1H NMR timeframe.  Future work 

will focus on the reactivity of these copper(I) and zinc(II) complexes to further 

elucidate their properties. 
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