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An event-based partial wave analysis (PWA) of the reaction γp → pω has been performed on a high-
statistics dataset obtained using the CLAS at Jefferson Lab for center-of-mass energies from threshold up to
2.4 GeV. This analysis benefits from access to the world’s first high-precision spin-density matrix element
measurements, available to the event-based PWA through the decay distribution of ω → π+π−π 0. The data
confirm the dominance of the t-channel π 0 exchange amplitude in the forward direction. The dominant resonance
contributions are consistent with the previously identified states F15(1680) and D13(1700) near threshold, as well
as the G17(2190) at higher energies. Suggestive evidence for the presence of a JP = 5/2+ state around 2 GeV, a
“missing” state, has also been found. Evidence for other states is inconclusive.

DOI: 10.1103/PhysRevC.80.065209 PACS number(s): 11.80.Cr, 11.80.Et, 13.30.Eg, 14.20.Gk

I. INTRODUCTION

Studying near-threshold ω photoproduction presents an
interesting opportunity to search for new baryon resonances.
Measurements made by previous experiments have produced
relatively high-precision cross sections at most production
angles; however, precise spin-density matrix elements have
only been measured at very forward angles and at higher en-
ergies [1–5]. In the near-threshold region, the only previously
published spin-density matrix results, which come from the
SAPHIR Collaboration, constitute a total of eight data points
in the energy range from ω photoproduction threshold up to a
center-of-mass energy, W , of about 2.4 GeV [5].

A number of theoretical studies have been undertaken
with the goal of extracting resonance contributions to ω

photoproduction from these data. All of the authors agree on
the importance of contributions from π0 exchange in the t

channel; however, discrepancies exist on the importance of
various resonance contributions. In the calculations of Oh
et al. [6], the dominant resonance contributions are found to
be from a “missing” P13(1910) state (i.e., a state predicted by
the constituent quark model but not observed experimentally)
and from a D13(1960) state. In contrast to this, Titov and
Lee [7] find the most significant resonance contributions to
be from the D13(1520) and F15(1680) states. The quark model
calculations made by Zhao [8] find that the two most important
resonance contributions to ω photoproduction come from the

*Current address: Imperial College London, London SW7 2AZ,
United Kingdom.
†Current address: Stanford University, Stanford, CA 94305, USA.
‡Current address: LPSC-Grenoble, France.
§Current address: Thomas Jefferson National Accelerator Facility,

Newport News, Virginia 23606, USA.
‖Current address: Los Alamos National Laborotory, New Mexico,

NM, USA.
¶Current address: University of Minnesota, Minneapolis, MN

55455, USA.
**Current address: The George Washington University, Washington,

DC 20052, USA.
††Current address: Edinburgh University, Edinburgh EH9 3JZ,

United Kingdom.
‡‡Current address: College of William and Mary, Williamsburg,

Virginia 23187-8795, USA.

P13(1720) and F15(1680) states. The P11(1710) and P13(1900)
states were found to be the dominant resonance contributions
in the coupled-channel analysis of Penner and Mosel [9].

All of the models mentioned above were fit solely to
differential cross sections. A more recent analysis [10] also
included the spin-density matrix elements published by the
SAPHIR Collaboration [5]. This work found the largest
resonant contributions to ω photoproduction to be from the
subthreshold D15(1675) and F15(1680) states. The authors
noted the importance of the strong additional constraints
placed on their model by the polarization information and
concluded that: there is urgent need for precise measurements
of the spin-density matrix in more narrow energy bins to pin
down the reaction picture.

Recently published results from the CEBAF Large Accep-
tance Spectrometer (CLAS) have provided such measurements
[11]. In the center-of-mass (c.m.) energy range from threshold
up to 2.84 GeV, differential cross section results were reported
at 1960 points in W and cos θω

c.m.. The experiment did not
use a polarized beam or a polarized target; thus, only the
ρ0

00, ρ0
1−1, and Re(ρ0

10) elements of the spin-density matrix
could be determined (the definitions of which can be found
in [12]). These results were reported at 2015 points in W and
cos θω

c.m.. The increase in precision for ρ0
MM ′ , in the energy

range overlapping the SAPHIR results, is approximately a
factor of 148.

In this paper, we present an event-based mass-independent
partial wave analysis (PWA) of these data, i.e., the data
are only divided into narrow c.m. energy bins. In each of
these narrow bins, the spin-independent part of any resonance
propagator—a complex function of W—is approximated as
a constant complex number. This allows us to reduce model
dependence in our treatment of resonances (see Sec. III C for
further discussion on this topic).

The data used in our analysis were obtained using the CLAS
housed in Hall B at the Thomas Jefferson National Accelerator
Facility. Real photons were produced via bremsstrahlung
from a 4.02 GeV electron beam. The momenta of the recoiling
electrons were then analyzed in order to obtain the energy of
the photons with an uncertainty of 0.1% [13]. The physics
target was filled with liquid hydrogen. The ω → π+π−π0

decay was used to select the reaction of interest. The momenta
of the charged particles (p, π+, π−) were determined using the
CLAS with an uncertainty of approximately 0.5%. The neutral
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π0 was reconstructed using kinematic fitting. More details
concerning the analysis techniques can be found in [11,14].
A detailed description of the CLAS can be found in [15].

In total, the dataset consists of over 10 million signal
events divided into 112 10-MeV wide c.m. energy bins. Our
primary interest is in extracting possible nucleon resonance
contributions; thus, we have restricted our PWA to include
only bins with W < 2.4 GeV. In total, 67 c.m. energy bins
were used in the PWA (the W = 1.955 GeV bin was excluded
due to issues with the normalization calculation [11]). This
work represents the first event-based PWA results on baryons
from photoproduction data.

II. PWA FORMULAS

As stated above, to limit theoretical model dependence we
divided our data into 10-MeV wide W bins. Thus, all formulas
written below are intended to describe data from a narrow c.m.
energy range. In all of the work that follows, pi, pf , q, and k

will be used for the initial proton, final proton, ω, and photon
four-momenta. The z-axis in the overall c.m. frame, defined
by k̂, is used as the angular momentum quantization axis. The
Mandelstam variables are defined as

s = (pi + k)2 = (pf + q)2, (1a)

t = (q − k)2 = (pi − pf )2, (1b)

u = (pi − q)2 = (pf − k)2. (1c)

The mass of the proton and ω are denoted as wp and wω,
respectively.

The Lorentz invariant transition amplitude, M, of the
process γp → pω → pπ+π−π0, can be written as

|M(�α, �x)|2 =
∑

mi,mγ ,mf

∣∣∣∣∣
∑

a

Aa
mi ,mγ ,mf

(�α, �x)

∣∣∣∣∣
2

, (2)

where mi,mγ ,mf are the initial proton, incident photon, and
final proton spin projections, Aa

mi ,mγ ,mf
are the partial wave

amplitudes (the form of which is discussed in Sec. III), �x
denotes the complete set of kinematic variables describing the
reaction and �α are the unknown parameters to be determined
by the fit. We denote the detector acceptance by η(�x) and the
phase-space volume as d�(�x) = φ(�x)d �x. A more detailed de-
scription of the work presented in this section is given in [14].

A. Likelihood

All of our fits are event-based; thus, the data were only
binned in W . To obtain estimators for the unknown parameters,
α̂, we employ the extended unbinned maximum likelihood
method. The work detailed in this section is based on that of
Chung [16]; however, the normalizations we have developed
differ from his work. The likelihood function is defined as

L =
[
n̄(�α)n

n!
e−n̄(�α)

] n∏
i

P(�α, �xi), (3)

where the term in brackets is the Poisson probability of
obtaining n events given the expected number n̄(�α) (the
calculation of which is discussed below), �xi represents the

complete set of kinematic variables of the ith event, and
P(�α, �x) is the probability density function given by

P(�α, �xi) = |M(�α, �xi)|2η(�xi)φ(�xi)∫ |M(�α, �x)|2η(�x)φ(�x)d �x . (4)

From left to right, Eq. (4) accounts for the relative strength
of the transition amplitude, the detection probability, and
the available phase space for the ith event. Calculation of
the denominator, which normalizes the probability density
function, is discussed below. The estimators α̂ are then found
by maximizing L.

B. Normalization

The expected number of signal events for a given set of
parameters is given by

n̄(�α) = T (s)(2π )4

8
(
s − w2

p

)
∫

|M(�α, �x)|2η(�x)d�(�x), (5)

which includes the average over initial spin states

T (s) = F(s)ρtarg
targNAb

Atarg
(6)

is the “target factor” obtained from the target density, ρtarg,
length, 
targ, and atomic number, Atarg; along with Avogadro’s
number, NA; the branching fraction of ω → π+π−π0, b; and
the integrated photon flux in each W bin, F(s).

The integral in Eq. (5) must be done numerically due to
the lack of an analytic expression for the detector acceptance.
Monte Carlo events were generated in each W bin according
to γp → pω (the ω mass was generated according to a
Breit-Wigner distribution), ω → π+π−π0 phase space and
then run through a GEANT-based detector simulation package
(discussed in detail in [11,14]). This procedure simulates the
acceptance of the detector by rejecting events that would not
have survived the data analysis, i.e., for each generated event,
the acceptance factor η(�xi) = 0 or 1. The integral can then be
approximated by
∫

|M(�α, �x)|2η(�x)d�(�x) ≈
∫

d�(�x)

ngen

nacc∑
i

|M(�α, �xi)|2, (7)

where ngen(nacc) is the number of generated (accepted) Monte
Carlo events and∫

d�(�x) = {[s − (wp + wω)2][s − (wp − wω)2]}1/2

4(2π )5s
(8)

is the volume of the two-body pω phase space (the 3π phase-
space volume is factored into the normalization of the ω decay
amplitude).

Using Eqs. (7) and (8), Eq. (5) can be rewritten as

n̄(�α) = {[s − (wp + wω)2][s − (wp − wω)2]}1/2

64πs
(
s − w2

p

)

× T (s)

ngen

nacc∑
i

|M(�α, �xi)|2. (9)

This normalization allows us to use physical coupling con-
stants in our event-based fits, i.e., it allows us to put our
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parameters on an absolute scale. Thus, our normalization
scheme permits direct theoretical input.

C. Log likelihood

Due to the monotonically increasing nature of the natural
logarithm, the likelihood, L, defined in Eq. (3) can be
maximized by minimizing

−lnL = −n ln n̄(�α) + ln n! + n̄(�α) −
n∑
i

lnP(�α, �xi), (10)

which, using Eqs. (4) and (5), can be rewritten as

−lnL = ln n! + n̄(�α) + n ln
8
(
s − w2

p

)
T (s)(2π )4

−
n∑
i

ln |M(�α, �xi)|2η(�xi)φ(�xi). (11)

Neglecting terms that do not depend on the parameters, we can
then rewrite Eq. (11) as follows:

−lnL = −
n∑
i

ln |M(�α, �xi)|2 + n̄(�α) + const. (12)

We note here that for any set of estimators that minimize
Eq. (12), the expected number of events is n̄(α̂) = n.

D. Handling background

To accurately extract partial wave contributions to ω

photoproduction, background events, i.e., non-ω events, must
be separated from the signal in a way that preserves all
kinematic correlations. The method we applied to our data,
described in detail in [11,14,17], assigned each event a signal
quality factor, or Q factor. This background was assumed to
be noninterfering. Following our previous work [17], we can
rewrite Eq. (12) using these Q factors as

−lnL = −
n∑
i

Qi ln |M(�α, �xi)|2 + n̄(�α) + const, (13)

where Qi is the Q factor for the ith event. Thus, the Q

factors are used to weight each event’s contribution to the
likelihood. We also note that in the literature, the t- and
u-channel contributions are often referred to as background.
This theoretical background is not to be confused with the
experimental background discussed here. In this analysis,
the theoretical backgrounds were allowed to interfere with
the s-channel amplitudes in our PWA.

III. PWA AMPLITUDES

The choice of which amplitudes to include to describe the
data is partially motivated by experimental measurements.
The ω photoproduction cross section is known to have a
strong forward peak, even at near-threshold energies [11]. At
higher energies, the cross section develops a rather pronounced
backward peak as well [11]. These features are typically

p p

ωγ
π0ε , η

(a)

p p

ωγ
P

(b)

p ω

pγ
p

(c) (d)

(e)

p p

ωγ p

p p

ωγ
N∗

FIG. 1. Feynman diagrams for the amplitudes used in our analy-
sis. The images were produced using the JaxoDraw package [19].

associated with meson and nucleon exchanges in the t and
u channels, respectively. The recent CLAS data also possess
a number of features in the cross sections and spin-density
matrix elements suggestive of resonance contributions [11].
Thus, it would seem that s-, t-, and u-channel amplitudes
may be required to fully describe the data (see Fig. 1). The
formalism used to construct these amplitudes is described in
detail elsewhere [14], below we simply give an overview of the
different types of amplitudes used in our analysis. All of these
amplitudes were computed using the qft++ package [18],
which performs numerical computations of quantum field
theory expressions.

A. ω → π+π−π 0

The ω → π+π−π0 amplitude can be written in terms of
the isovectors, �Iπ , and the four-momenta, pπ , of the pions,
along with the ω four-momentum (q), polarization (ε), and
spin projection, mω, as

Amω

ω→π+π−π0 ∝ [( �Iπ+ × �Iπ0 ) · �Iπ− ]

× εµναβpν
π+pα

π−p
β

π0ε
µ(q,mω), (14)

which is fully symmetric under interchange of the three pions.
For this reaction, where all final states contain ω → π+π−π0,
the isovector triple product simply contributes a factor to the
global phase of all amplitudes. In the ω rest frame, Eq. (14)
simplifies to

Amω

ω→π+π−π0 ∝ ( �pπ+ × �pπ− ) · �ε(mω), (15)

which is the standard nonrelativistic result [20].

B. t and u channels

Previous studies of forward ω photoproduction data have
shown that the reaction is dominated at low energies by pion
exchange and at higher energies by diffractive processes, i.e.,
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Pomeron exchange (see, e.g., [1]). We have chosen to use
the nonresonant terms included in the model of Oh, Titov,
and Lee (OTL) [6] in our partial wave analysis. The OTL
Pomeron exchange amplitude follows the work of Donnachie
and Landshoff [21] with the unknown parameters fixed by
fitting to high energy vector meson cross section data.

The OTL model also includes pseudoscalar meson ex-
change amplitudes obtained from the following Lagrangians:

Lφpp = −igφppψ̄γ 5ψφ, (16a)

Lγφω = e
gγφω

wω

εµναβ∂µων∂αAβφ, (16b)

where φ = (π, η), Aµ, and ψ denote the pseudoscalar, photon,
and proton fields, respectively. The vertices in these amplitudes
were dressed using form factors of the type

F (t, �) = �2 − w2
φ

�2 − t
, (17)

where � is the cutoff parameter for the interaction and wφ

is the mass of the exchanged particle. The larger mass and
weaker coupling constants of the η suppress its contribution
relative to that of the pion.

Nucleon pole terms were obtained from the Lagrangians

Lγpp = −eψ̄

(
γ µ − κp

2mp

σµν∂ν

)
Aµψ, (18a)

Lωpp = −gωppψ̄

(
γ µ − κω

2mp

σµν∂ν

)
ωµψ. (18b)

The form factor

FN (x) = �4
N

�4
N − (

x − w2
p

)2 , (19)

where x = (s, u), was included to dress the corresponding
vertices. The amplitudes were also modified to preserve gauge
invariance. The details concerning these modifications, along
with the values of the parameters used in the model can be
found in [6].

In the near-threshold region, the high precision spin-density
matrix results published by CLAS confirm the dominance of
t-channel π0 exchange in the forward direction; however,
at higher energies the existing theoretical models fail to
reproduce the CLAS data [22]. The Pomeron amplitudes
are able to describe the energy dependence of the forward
cross section, but fail to adequately describe the spin-density
matrix elements. The unknown parameters present in the
nucleon exchange amplitudes can be modified to describe the
backward-angle data at higher energies if some assumptions,
the reliability of which are unknown, are made [22].

Our analysis is restricted to the energy range from threshold
up to 2.4 GeV. For c.m. energies below 2 GeV, the π0 exchange
amplitude dominates the t-channel contributions. In the higher
energy range used in our analysis, the π0 contribution is
still substantially larger than that of the Pomeron. Thus, the
deficiencies in the Pomeron amplitudes (discussed above)
should not greatly affect our PWA results. For this reason,
we have chosen to use the OTL t-channel terms with the
parameter values obtained in that analysis [6]. Due to the
unreliability of the assumptions under which the nucleon

exchange parameters were determined, we have decided not to
include these amplitudes in our analysis, i.e., we do not include
any u-channel terms in our fits. The effect of this choice on
our conclusions was found to be negligible (see Sec. V).

C. Resonant waves

The formalism used to construct our resonant amplitudes
is described fully in [14]. It involves the use of relativistic
tensor operators and is similar to the framework employed by
Anisovich et al. [23].

As discussed above, we do not impose resonant-like shapes
on our s-channel waves. Instead, we divide our data into narrow
c.m. energy bins. In each of these bins, the mass-dependence
of an s-channel wave with spin J and parity P , which we
will denote RJP (s), is approximated by a constant complex
number:

RJP (s) ≈
∑

b

rb
JP e

iφb

JP �(δ − |√s − Wb|), (20)

where the sum is over the 10-MeV wide c.m. energy bins,
rb
JP , φb

JP are the strength and phase of the mass dependence
in each bin, respectively, and δ ≡ 5 MeV is the maximum
distance in any bin from the centroid Wb. The resonant waves
then enter into our fits according to

AJP ,LSi ,LSf

mi ,mγ ,mf
= gJP

LSi
gJP

LSf
RJP (s)A

JP ,LSi ,LSf

mi ,mγ ,mf
, (21)

where LSi(f ) are the angular momentum quantum numbers
of the initial (final) state, gJP

LSi (f ) are the unknown coupling
constants to these states, and A is the covariant amplitude
obtained using the formalism described in [14].

The values extracted for each s-channel wave’s rb
JP and

φb
JP parameters can be used to search for evidence of nucleon

resonance contributions in that wave. For every fit iteration
run in each W bin (multiple iterations are run to alleviate
problems caused by local minima), these parameters are started
at random values that include the entire physically allowed
range of the parameter. For example, φb

JP is started randomly
in the range [0, 2π ). Estimators for the parameters are then
found by maximizing the likelihoods independently in each
W bin. In this way, the mass dependence of the waves is
extracted unbiasedly. If resonant-like features are found in the
cross sections and phase motion of the s-channel waves, then
this is very strong evidence that resonances do contribute to
the scattering amplitude.

If the strength observed in an s-channel wave is due
to a single resonant state, then RJP (s) should be (at least
qualitatively) described by a constant-width Breit-Wigner line
shape of the form:

BW(s) = w�

s − w2 + iw�
, (22)

where w and � denote the mass and width of the state,
respectively. If, however, the strength in the wave is caused
by multiple resonant states or from a nonresonant process,
then the use of a Breit-Wigner line shape is not valid. The line
shape given in Eq. (22) neglects the kinematics and dynamics
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of the mass dependence of the resonance. This can be an issue,
e.g., near threshold. This will be addressed below.

IV. RESULTS

Before examining our results, it is important to reiterate
the goals of our analysis. We are attempting to extract
strong resonance contributions to ω photoproduction in a least
model-dependent way. We do not enforce resonance shapes
on the mass dependence of our partial waves. Instead, we first
extract the strengths and phase motion of our partial waves
independently in each W bin. This stage will be referred to as
a partial wave extraction (PWE). The second stage involves
comparing the results of the PWE to what is expected from
resonances in a mass-dependent fit (MDF). The PWE’s are
performed using unbinned extended maximum likelihood fits
to the data in each W bin. The MDF’s are simply χ2 fits to the
phase differences obtained between partial waves in a given
W region.

We are not looking to build a complete model of ω photo-
production, i.e., we do not claim that the fits discussed below
contain all of the amplitudes that contribute to this reaction.
Because of this, we do not expect the physical observables
extracted from our fits to provide perfect descriptions of our
measurements; however, the descriptions in many kinematic
regions are very good. Finally, we are not attempting to extract
all resonance contributions to ω photoproduction, only the
most significant.

A. Choice of wave sets

It is important to have a systematic method for selecting
wave sets. As discussed in Sec. III B, all of the wave sets used
in our analysis contain the OTL t-channel terms (which contain
no free parameters) and no u-channel terms. Systematic
studies show that the effects on extracted resonance parameters
due to the choice of the nonresonant model are small
(see Sec. V).

The mass-independent nature of our procedure, i.e., the
bin-to-bin freedom of the resonance parameters, makes the
use of smaller wave sets advantageous. For this reason, we
began our wave selection process by scanning the entire energy
range of interest, 1.72 GeV < W < 2.4 GeV, using the OTL t-
channel terms along with waves from a single spin-parity, JP .
The goal of this scan was to identify (possible) energy ranges
where waves of a given JP perform significantly better than
waves of any other spin-parity. This information alone does
not constitute evidence of resonance production; however, it
can serve as a guide as to which waves are more likely to
contribute strongly to ω photoproduction.

Given a pair of fits run with different wave sets, the
difference in the log likelihoods obtained from the fits,
� lnL ≡ lnLa − lnLb, can be used to quantitatively de-
termine which fit best describes the data. If � lnL > 0,
then wave set a provides a better description of the data
than wave set b, while � lnL < 0 implies the converse
is true.

W (MeV)

1800 1900 2000 2100

 ln
(L

)
∆

0

5000

10000

15000

+,5/2+1/2
 ln(L)∆

-,3/2+1/2
 ln(L)∆

FIG. 2. � lnL vs W (MeV): Example likelihood differ-
ences from s-channel scans. Each fit contained the locked
OTL t-channel terms, along with a single s-channel wave.
Shown are � lnL1/2+,5/2+ = lnL5/2+ − lnL1/2+ (open squares) and
� lnL1/2+,3/2− = lnL3/2− − lnL1/2+ (closed triangles). See text for
details and discussion.

Figure 2 shows two examples comparing the likelihood
differences between fits with different s-channel waves. The
� lnL quantities are shown for two separate fits, one with
JP = 5/2+ and one with JP = 3/2−, each of which is
compared to a fit with JP = 1/2+. From threshold up to W ∼
1.85 GeV, the fit with JP = 3/2− is clearly the best, while
in the energy range 1.85 GeV < W < 2 GeV the preferred
wave is JP = 5/2+. It is also clear in Fig. 2 that both the
JP = 3/2− and JP = 5/2+ waves provide better descrip-
tions of our data than the JP = 1/2+ wave in this energy
range.

Similar fits were run using any single s-channel wave with
J � 9/2 of both parities. In the region from threshold up to
W ∼ 1.85 GeV, the JP = 3/2− wave was found to provide a
better description of our data than any other wave. Similarly,
in the energy range 1.85 GeV < W < 2 GeV, the JP = 5/2+
wave was found to provide the best description.

Scans were also performed using two s-channel waves and
the OTL t-channel terms. The quantity � lnL can also be
used in these fits to determine which wave sets best describe
our data. In the W < 2 GeV region, the best fit was obtained
using the s-channel waves with JP = 3/2−, 5/2+. This wave
set had the best likelihood in every bin in this energy range
(typically by a large amount). Given the results of the single
wave s-channel scans discussed above, this is not a surprising
result. Above 2 GeV, the preferred wave set consisted of the
JP = 5/2+, 7/2− waves, along with the t-channel terms. As
in the lower energy range, this wave set had the best likelihood
in every energy bin for W > 2 GeV.

The results presented for the waves below were not affected
by our choice of wave set; however, as the number of waves
was increased so did the noise. For this reason, we have chosen
to present the results from fits with at most three s-channel
waves. See Sec. V for more discussion on fits with a larger
number of waves.
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B. Fit I: The near-threshold region

Our preliminary s-channel scans showed that the best fit
using two s-channel waves, along with the OTL t-channel
terms, in the energy range 1.72 GeV < W < 2 GeV is
obtained using JP = 3/2−, 5/2+. To extract any possible
resonance contributions in these waves, event-based PWE fits
were run using the locked OTL t-channel terms along with
JP = 3/2−, 5/2+ s-channel waves parametrized according to
Eq. (21). In each energy bin, multiple fit iterations were run
using random starting values for the parameters; the results pre-
sented below are always from the fit with the best likelihood.

1. Cross sections and phase motion

The strength and phase of each s-channel wave were
completely free to vary in each energy bin, i.e., they were fit
independently. The cross sections extracted for the s-channel
waves are consistent with either near or subthreshold resonance
states (see Fig. 3). The Particle Data Group (PDG) [24] lists
two states in these waves consistent with this hypothesis: (1)
the four-star F15(1680), which has a well known very large
coupling to γp; (2) the three-star D13(1700), which is currently
rated as having only a two-star coupling to γp. We note here
that the masses of the states cannot be (precisely) estimated
by simply examining the cross sections due to threshold
suppression effects.

Figure 4 shows the phase motion between the two s-channel
waves obtained from the PWE fits. The phase differences
were then fit in a MDF using the constant width Breit-Wigner
line shapes of the form given in Eq. (22). We chose not to
use mass-dependent widths in the Breit-Wigner line shapes
(despite the proximity to pω threshold) since the F15(1680)
[and perhaps the D13(1700) as well] is below threshold, which
introduces model dependence in a single-channel analysis.
For this reason, extracting precise values for the resonance
parameters may not be possible; however, the use of Eq. (22)
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FIG. 3. (Color online) Results from Fit I: σ (µb) vs W (MeV):
Total cross sections from all of the waves included in the fit (filled
squares), only t-channel waves (open squares), only JP = 5/2+

waves (circles), and only J P = 3/2− waves (triangles). The cross
sections extracted for both s-channel waves are consistent with
near/sub-threshold resonances. The error bars are purely statistical.
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FIG. 4. (Color online) Results from Fit I: �φ = φ3/2− − φ5/2+

(radians) vs W (MeV): The dashed line was fit using constant width
Breit-Wigner distributions requiring the parameters to be within the
limits quoted by the PDG for the four-star F15(1680) and three-star
D13(1700). The solid line was fit allowing the 3/2− parameters to
vary freely, the results are listed in the text. The error bars are purely
statistical.

is sufficient to provide evidence for the presence of known
PDG states in our data.

In principle, our MDF fits could have been made to the
partial-wave intensities as well as the phase difference. In
order to do this, form factors would need to be introduced
at both the production and decay vertices. While these form
factors do not strongly influence the phase difference, they
are very important for describing the shapes of the cross
sections. The intensities of the partial waves (in this fit, and
in the following sections) are qualitatively consistent with
the expected resonance shapes. Obtaining good quantitative
agreement requires the extra degrees of freedom introduced
by the form factors; however, including these factors also
introduces additional model dependence. Thus, we have
decided to only fit the phase difference—which, as noted, is
nearly independent of the form factors.

Our results are, qualitatively, in good agreement with those
expected from the PDG states mentioned above. The dashed-
line in Fig. 4 was fit requiring all parameters to be within the
limits quoted by the PDG for the F15(1680) and D13(1700).
There is a minor discrepancy in the near-threshold bins. The
parameters of the D13(1700) are not as well known as those of
the F15(1680); thus, we also performed a MDF allowing the
3/2− parameters to vary freely. This fit resulted in a mass of
1754 MeV and a width of 39 MeV for the D13(1700), which
are very close to the PDG limits. Uncertainties of 21 MeV
for the mass and 12 MeV for the width were estimated by
examining the variation in the 3/2− parameters while using
various parameter values (all within the PDG limits) for the
5/2+, along with fitting different subranges in W of the phase
motion.

A single channel analysis is not the best environment
for extracting precise resonance parameters; however, the
qualitative agreement of the phase motion obtained from the
PWE’s to that of the two PDG states is very suggestive of their
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presence in our data. Recall that the phase parameters were
each started pseudorandomly in the range [0, 2π ) in each W

bin. Yet the results are in good qualitative agreement with
the phase motion expected using simple constant width Breit-
Wigner distributions for the PDG F15(1680) and D13(1700)
states.

2. Production helicity amplitudes

We can also compare the production helicity couplings
extracted from our fits to those quoted by the PDG. The ratio of
the helicity amplitudes is obtained using the production cou-
plings, gJP

LSi
in Eq. (21), extracted by the fits and the s-channel

production amplitudes. Due to the nature of the covariant for-
malism, these amplitudes are energy-dependent; i.e., the ratio
of the helicity amplitudes is a function of W . The PDG quotes
these values at the resonance masses. For the D13(1700), the
PDG reports the ratio of the helicity amplitudes as [24]

A3/2

A1/2
= 0.11 ± 1.34. (23)

Our fits extract this value to be in the range [−0.06, 0.13],
depending on the mass of the JP = 3/2− state. This is in a
very good agreement with the PDG value.

The ratio of the helicity amplitudes for the F15(1680)
extracted by our fits is consistent with the PDG [24] value.
However, projecting this ratio from the pω threshold down to
the required mass makes obtaining a precise quantitative value
difficult.

3. Comparison to observables

Fit I consists of three production mechanisms: (1) OTL
t-channel terms (with no free parameters), which are domi-
nated by π0 exchange in this energy range; (2) JP = 3/2− s-
channel waves, whose extracted parameters are consistent
with the PDG D13(1700) state; (3) JP = 5/2+ s-channel
waves, whose extracted parameters are consistent with the
PDG F15(1680) state (at least, near threshold). This is almost
certainly not all of the physics contributing to ω photoproduc-
tion in this energy range. Thus, we would not expect Fit I to
provide a perfect description of our data. Before we examine
the quality of Fit I, we note that the OTL t-channel terms do
provide a good description of our forward data in the energy
regime of Fit I.

Figures 5 and 6 show comparisons of the differential cross
sections and spin-density matrix elements extracted from the
PWA fits compared to our measurements [11]. Recall that we
do not fit to the experimental observables directly. We perform
event-based fits to the data used to obtain the measured results.
The forward cross section and polarization observables are
very well described in this energy range, confirming that π0

exchange in the t channel does dominate the amplitude in this
region. There is a discrepancy in the description of the cross
section at backward angles that increases with energy. This
could be due to the lack of u-channel terms. It could also be a
signature of unaccounted-for s-channel amplitudes.

Though we did not start off by including known PDG
resonance states, the fit has extracted evidence for them

from our data. We also note here that the large-angle cross
section at W = 1.8 GeV is virtually flat. Without polarization
information, the production mechanism could have easily
been mistaken for a J = 1/2 wave. This demonstrates the
importance of the spin-density matrix elements.

The quality of the description of the observables decreases
slightly with increasing energy. This signifies that there is
another production mechanism that is not accounted for in
the fit. This is expected due to the limited number of waves
included in the PWA. Adding additional waves improves
the description of the data but has virtually no effect on
the strengths and phase motion of the two s-channel waves
presented in this section. Thus, the conclusions drawn about
resonance contributions are robust, and do not change when
additions are made to the wave set. See Sec. IV D1 for results
obtained by adding an additional s-channel wave to this fit.

C. Fit II: The higher mass region

Our preliminary s-channel scans showed that the best fit
using two s-channel waves and the OTL t-channel terms in the
energy range 2 GeV < W < 2.4 GeV is obtained using waves
with JP = 5/2+, 7/2−. To extract any possible resonance
contributions in these waves, the same procedure used for
Fit I was employed.

1. Cross sections and phase motion

As in Fit I, the strength and phase of each s-channel wave
were completely free to vary in each energy bin in the PWE’s.
The cross sections extracted for the s-channel waves, shown
in Fig. 7, are consistent with the tail of a JP = 5/2+ state with
a mass below 2 GeV (as seen in Fit I) and a JP = 7/2− state
with a mass near 2.2 GeV. The PDG lists a state consistent
with this hypothesis: the four-star G17(2190), which currently
is only listed as having one-star coupling to γp.

Figure 8 shows the phase motion between the two s-channel
waves extracted from the PWE’s. Our results do not agree with
those expected from the PDG F15(1680) and G17(2190) states,
assuming their mass dependencies are well described by the
constant width Breit-Wigner line shape described in Eq. (22).
Allowing the JP = 5/2+ parameters to vary freely gives us
better agreement and yields a mass around 1.95 GeV. The
presence of a second state in the JP = 5/2+ wave near this
mass would have virtually no effect on the results obtained in
Fit I; however, it would mean that the use of a Breit-Wigner
distribution in the energy range where both 5/2+ states are
contributing significantly, e.g., the energy region examined in
Fit II, is invalid.

Instead, we can employ a two-pole single channel K-matrix
for the 5/2+ states of the form [25]

K(s) =
2∑

α=1

g2
αpωB2


 (s)

w2
α − s

, (24)

where wα and gαpω are the K-matrix resonance masses
and coupling constants to the pω final state and B
 are
the centrifugal barrier factors (see, e.g., [23]). The mass
dependence of the amplitude is then written in terms of the
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FIG. 5. (Color online) dσ/d cos θω
c.m. (µb) vs cos θω

c.m.: PWA results from Fit I (solid black line), compared to our measurements
[11]. The individual contributions from the J P = 3/2− wave (red, dashed line), J P = 5/2+ wave (blue, dashed-dotted line), and OTL
t-channel terms (dotted black line) are also shown. The lack of data reported in the W = 1.955 GeV bin is due to normalization issues
[11].

production vector, P , and two-body phase-space factor,
ρ, as

R5/2+ (s) = P (1 − iρK)−1, (25)

where

P =
2∑

α=1

gαpγ gαpωB
(s)

w2
α − s

, (26)
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FIG. 6. (Color online) ρ0
MM ′ vs cos θω

c.m.: PWA results from Fit I: ρ0
00 (solid black line), ρ0

1−1 [solid middle (red) line], Reρ0
10 [solid bottom

(blue) line], compared to our measurements [11]. The lack of a fit in the W = 1.955 GeV bin is due to normalization issues [11].

with production coupling constants gαpγ and

ρ =
√

[s − (wω + wp)2][s − (wω − wp)2]

s
. (27)

For this MDF, we required the JP = 7/2− parameters to be
within the limits quoted by the PDG for the G17(2190). One of

the JP = 5/2+ K-matrix poles was required to be consistent
with the F15(1680). The exact location of this pole depends
on how one treats the opening of the pω threshold (this is a
single channel analysis). The parameters of the second JP =
5/2+ K-matrix pole were obtained from the MDF yielding
1930 MeV for the mass and 100 MeV for the width. Even with
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FIG. 7. (Color online) Results from Fit II: σ (µb) vs W (MeV):
Total cross sections from all of the waves in the fit (filled squares), only
t-channel waves (open squares), only J P = 5/2+ waves (circles), and
only J P = 7/2− waves (triangles). The cross section extracted for
J P = 5/2+ is consistent with the tail of a lower mass state (as seen
in Fit I). The J P = 7/2− cross section is indicative of a state near
2.2 GeV. The errors are purely statistical.

these constraints, the results provide a very good description
of the phase motion obtained from the PWE.

In principle, poles in the T -matrix and poles in the K-matrix
can be quite different. The relationship between the two
can also depend on the specific K-matrix model employed.
For these reasons, care must be taken when interpreting the
parameters obtained for the “second” 5/2+ resonance. While
the K-matrix parameters may not coincide exactly with the
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FIG. 8. (Color online) Results from Fit II: �φ = φ7/2− − φ5/2+

(radians) vs W (MeV): The dot-dashed line is the phase motion
expected using constant width Breit-Wigner distributions and the
parameters quoted by the PDG for the F15(1680) and G17(2190). The
dashed line required the J P = 7/2− parameters to be within the PDG
limits for the G17(2190), while allowing the J P = 5/2+ parameters
to vary freely. The solid line used a constant width Breit-Wigner
distribution for the G17(2190), but a two-pole single channel K-matrix
for the J P = 5/2+ wave. The parameters obtained from these fits are
listed in the text. The error bars are purely statistical.

physical T -matrix values, the observed strength in this wave
and its phase motion relative to the G17(2190) support it
having a mass around 1.9–2 GeV and a width of approximately
200–300 MeV. These values are in good agreement with the
missing F15(2000) state predicted by [26]. A check using
the (unitarity violating) two Breit-Wigner prescription also
resulted in 5/2+ resonance parameters in this range. To extract
precise resonance parameters for this state (and to confirm its
existence), a coupled-channel analysis should be employed.

2. Production helicity amplitudes

The ratio of the helicity amplitudes for the F15(1680) was
discussed in Sec. IV B2. Without employing a model we
cannot separate out the possible missing F15(2000) production
amplitudes. The ratio of the helicity amplitudes for the
G17(2190) is extracted to be

A3/2

A1/2
= −0.17 ± 0.15. (28)

Due to its one-star coupling to γp, the PDG does not quote a
value for this ratio.

3. Comparison to observables

As in Fit I, we do not expect the limited number of waves
used in Fit II to include all of the physics at these energies.
Thus, we again do not expect to provide a perfect description
of the observables in this energy regime. Before we examine
Fit II, we note that the OTL t-channel terms provide a good
description of our forward cross sections; however, there are
some noticeable discrepancies with the spin-density matrix
elements at these energies [22].

Figures 9 and 10 show the differential cross sections and
spin-density matrix elements extracted from the PWA fits
compared to our measurements [11]. As the energy increases,
the quality of the descriptions of the spin-density matrix
elements decreases. This is partly due to the issues with the
nonresonant model employed (as discussed in Sec. III B).
At these energies, the OTL t-channel terms begin to fail
to adequately describe the polarization observables. The
discrepancies in the backward direction could be due to the
lack of inclusion of any u-channel terms. The effects on our
results, i.e., the effects on conclusions drawn about resonance
contributions, due to possible issues with the nonresonant
terms are discussed in Sec. V.

The lack of perfect description of the data signifies that
there are other production mechanisms that are not accounted
for in the fit. This is, again, expected due to the limited number
of waves included in the PWA. Adding additional waves
improves the description of the data. The strengths and phase
motion of the two s-channel waves presented in this section
become noisier in the presence of these additional waves;
however, the conclusions drawn about resonance contributions
are unaffected by additions to the wave set. We are unable
to determine from our PWE’s which additional waves may
coincide with unaccounted-for physical processes; thus, we
do not present them here. Perhaps future measurement of
additional polarization observables in this energy range might
help determine the nature of these waves.
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FIG. 9. (Color online) dσ/d cos θω
c.m. (µb) vs cos θω

c.m.: PWA results from Fit II (solid black line), compared to our measurements [11]. The
individual contributions from the J P = 7/2− wave (red, dashed line), J P = 5/2+ wave (blue, dashed-dotted line), and OTL t-channel terms
(dotted black line) are also shown.

D. Evidence for additional resonance states

One of the prime motivating factors in undertaking this
study was to search for missing resonances. The strongest
evidence for resonance contributions to ω photoproduction
found in Fits I and II was for well-known PDG states.
Suggestive evidence was also found for a missing F15(2000)

state. Below we examine possible additional resonance
contributions.

1. Fit III: The 3/2+ wave

Quark model calculations predict three missing resonances
with JP = 3/2+ in the energy range of Fit I which couple
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FIG. 10. (Color online) ρ0
MM ′ vs cos θω

c.m.: PWA results from Fit II: ρ0
00 [solid upper (at the right-hand edge) line (black)], ρ0

1−1 [solid middle
(at the right-hand edge) line (red)], Reρ0

10 [solid lower (at the right-hand edge) line (blue)], compared to measurements [11]. See text for
discussion.

to pω [26]. Figure 11 shows the cross sections and phase
motion obtained if we add a JP = 3/2+ wave to the PWE
in Fit I. Below 1800 MeV, the range of production angles
over which the CLAS has acceptance is limited. This makes
it difficult to cleanly separate contributions from three waves;
thus, this energy range has been excluded from these fits.

The strengths and phases of the JP = 3/2−, 5/2+ waves are
virtually unaltered by the addition of the extra s-channel wave.
The cross section of the JP = 3/2+ wave does show some
fairly smooth structure; however, its phase motion, relative to
the other two resonant states, is not consistent with a single
constant width Breit-Wigner hypothesis. If we instead perform
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FIG. 11. (Color online) Results from Fit III: (a) σ (µb) vs W (MeV): Total cross sections extracted from all of the waves in the fit (filled
black squares), only t-channel waves (open squares), only 5/2+ waves (circles), only 3/2− waves (triangles), and only 3/2+ waves (crosses).
(b) �φ = φ5/2+ − φ3/2+ (radians) vs W (MeV). (c) �φ = φ3/2− − φ3/2+ (radians) vs W (MeV). The solid curves show the phase motion
expected assuming the J P = 3/2+ has Breit-Wigner parameters M3/2+ = 1875 MeV and �3/2+ = 150 MeV while locking the J P = 3/2− and
J P = 5/2+ parameters to be those of the D13(1700) and F15(1680), respectively. The phase motion obtained for the 3/2+ is not consistent
with a single resonant state. The dashed line on (c) represents using the D13(1700) Breit-Wigner parameters for the 3/2− and a single
channel two-pole K-matrix for the 3/2+. There is enough freedom to describe the data (see text for discussion). All error bars are purely
statistical.

a MDF using the K-matrix formalism described in Sec. IV C1
for the JP = 3/2+ wave, the phase motion between the JP =
3/2−, 3/2+ waves is well described. The poles in the K-matrix
are at 1850 MeV and 1950 MeV. We could apply the same
procedure for the JP = 5/2+, 3/2+ phase motion; however,
both waves would have K-matrices and the number of free
parameters would leave the fit underconstrained.

Figures 12 and 13 show the comparisons of the PWA
results with our measurements [11]. The additional 3/2+
wave improves the description of the spin-density matrix
elements obtained in Fit I (see Fig. 6). It is difficult to make
firm conclusions about the JP = 3/2+ wave. The observed
strength suggests there is significant overlap of the scattering
amplitude with this partial wave; however, this is not sufficient
evidence to claim resonance contributions. The phase motion
of the 3/2+ wave relative to the 3/2− and 5/2+ waves is not

consistent with a single resonant state. This does not, however,
rule out the existence of the multiple states predicted by the
quark model.

2. Limitations of the mass-independent technique

Numerous other fits that we have performed yielded
inconclusive evidence for states of various spin-parities. These
fits are very similar to Fit III. Generally, smooth structures
are found in the extracted cross sections; however, the phase
motion is inconsistent with a single resonant state. It is possible
that a number of resonant states exist which couple relatively
strongly to pω. It is also possible that the smooth cross sections
are simply the result of overlap of various partial waves with
unaccounted-for nonresonant terms. It would appear that we
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FIG. 12. (Color online) dσ/d cos θω
c.m. (µb) vs cos θω

c.m.: PWA results from Fit III (solid black line), compared to our measurements [11].
The individual contributions from the J P = 3/2− wave (red, dashed line), J P = 5/2+ wave (blue, dashed-dotted line), the J P = 3/2+ wave
(green, dashed-triple-dotted line), and OTL t-channel terms (dotted black line) are also shown. The lack of data reported in the W = 1.955 GeV
bin is due to normalization issues [11].

have reached the limits of what our technique can extract from
our data.

More polarization information may be required to cleanly
extract additional resonances. Improved theoretical input for
the nonresonant (non s-channel) terms may also be necessary.

While our studies have shown that the strong s-channel signals
extracted by this analysis are not affected by the way that the
nonresonant terms are modeled (see Sec. V), this is almost
certainly not the case for weaker signals. This is particularly
true at higher energies, where the current theoretical models do
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FIG. 13. (Color online) ρ0
MM ′ vs cos θω

c.m.: PWA results from Fit III: ρ0
00 [solid upper (at the right-hand edge) line (black)], ρ0

1−1 [solid
middle (at the right-hand edge) line (red)], Reρ0

10 [solid lower (at the right-hand edge) line (blue)], compared to measurements [11]. See text
for discussion.

a poor job of describing the new CLAS data. The amplitudes
that are currently being generated by several groups from a
coupled-channel approach (see, e.g., [27]) may well allow for
the extraction of much weaker resonance signals from these
data.

V. SYSTEMATIC STUDIES

A. s-channel scans

In Sec. IV A, we found that the single s-channel waves with
the best likelihoods were JP = 3/2− for W < 1.85 GeV and

065209-16



PARTIAL WAVE ANALYSIS OF THE REACTION . . . PHYSICAL REVIEW C 80, 065209 (2009)

JP = 5/2+ for 1.85 GeV < W < 2 GeV. We proceeded to add
single s-channel waves to these fits to determine which had the
best likelihoods; these were the basis for the wave sets used in
Fits I and II. We can also examine the “discarded” wave sets
and examine the s-channel contributions as a systematic check
on our results.

In the W < 2 GeV energy range, the s-channel waves with
JP = 3/2−, 5/2+, used in Fit I, had the best likelihood of all
two s-channel wave combinations (when combined with the
OTL t-channel waves). In this fit, the contributions extracted
for the two s-channel waves were approximately equal in size
for W < 1.85 GeV. For all other [3/2−, J P ] combinations,
the extracted contribution for the JP = 3/2− wave was the
bigger of the two s-channel terms in this energy range. In
the 1.85 GeV < W < 2 GeV energy range, the 5/2+ wave had
the larger of the two s-channel contributions for every JP used
for the other s-channel wave. Fits were also run using all two
s-channel wave combinations (with the OTL t-channel terms)
over the entire energy range. The contributions of the waves
presented in this paper were consistent, regardless of which
other waves they were fit with.

The robustness of the results presented in this paper was
also tested by performing the PWE’s with larger wave sets.
The presence of any additional J � 5/2 wave does not
effect the conclusions drawn about resonance contributions to
Fit I or Fit II. Fits run with very large wave sets that included
all s-channel waves with J � 9/2 also confirm the large
contributions from the JP = 3/2− and 5/2+ below 2 GeV
and from J � 7/2 waves around 2.2 GeV; however, with this
many waves it was not possible to unambiguously determine
the spin-parity of the large J contribution.

B. Including u-channel terms

Another possible cause of systematic effects is our lack
of inclusion of any u-channel terms. For W < 2 GeV, any
u-channel contribution must be small due to the lack of
any visible peak in the backward cross section. Thus, the
conclusions drawn from Fit I are independent of whether or
not u-channel terms are included. The same cannot be said for
the energy regime of Fit II. In [22], we were able to modify the
u-channel parameters of the Oh, Titov, and Lee model to better
describe our highest energy data; however, these amplitudes
were not included in our PWA fits due to a lack of confidence
in the assumptions used to obtain the parameters.

We can examine what effect adding these terms would have
on the resonance parameters extracted in Fit II. Figure 14
shows the phase motion obtained from Fit II with and
without u-channel amplitudes. The agreement is very good
in the region where both of the s-channel waves have strong
contributions to the cross section. It is only in the regions
where the cross section of one of the s-channel terms is very
small that including u-channel terms leads to a discrepancy in
the extracted phase motion. Therefore, the conclusions drawn
from Fit II regarding the resonance states are unaffected by
how the u-channel terms are modeled.

We also note here that the likelihoods of the fits containing
the u-channel terms were worse in all bins. Perhaps this is
not surprising since the modified OTL terms were obtained

W (MeV)

2000 2200 2400

-1.5

-1

-0.5

0

with u-channel

no u-channel

FIG. 14. (Color online) Fit II +u-channel: �φ = φ7/2− − φ5/2+

(radians) vs W (MeV): Phase motion obtained with and without
u-channel terms in Fit II. Including u-channel terms only creates
discrepancies in the phase motion where one of the s-channel waves
has a small contribution to the cross section. The error bars on both
phase motion plots are purely statistical.

assuming the entire backward production amplitude is due
to u-channel mechanisms at our highest energies. To obtain
a better u-channel model, the OTL parameters should be
fit including s-channel waves; however, to simply estimate
the effects of neglecting u-channel terms in Fit II, these
parameters are sufficient.

VI. CONCLUSIONS

An event-based mass-independent partial wave analysis
has been performed on data obtained using the CLAS at
Jefferson Lab. Evidence has been found for contributions
from the F15(1680) and D13(1700) nucleon resonance states.
These states are found to be dominant near threshold. The
data also strongly support the presence of the G17(2190)
state. Suggestive evidence for an additional 5/2+ state with
a mass around 1.9–2 GeV has also been found. The data
shows definite strength in this partial wave over a very large
energy range. The phase motion between this wave and the
G17(2190) supports the presence of a second 5/2+ state near
1.95 GeV. Some evidence for other states exists, although
the interpretations are more difficult. The strength seen in the
JP = 3/2+ wave around W = 1.8–2 GeV, for example, is not
consistent with a single resonant state; however, we cannot
rule out the possibility that multiple 3/2+ resonances could be
contributing to our data at these energies. To extract additional
resonance signals from our data, improved theoretical input for
the nonresonant terms may be required. In particular, including
the amplitudes currently being generated by coupled-channel
analyses would be highly desirable.
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