Changes in thymidine incorporation by larvae of the American oyster Crassotrea virgim/ca (gmelin) after challenge by two species of yeast (Candida)

Phyllis C. Braun

Fairfield University, pcbraun@fairfield.edu

Theodore J. Combs

Copyright 1984 National Shellfisheries Association

The final publisher PDF has been archived here with permission from the copyright holder.

Peer Reviewed

Repository Citation

Published Citation

This Article is brought to you for free and open access by the Biology Department at DigitalCommons@Fairfield. It has been accepted for inclusion in Biology Faculty Publications by an authorized administrator of DigitalCommons@Fairfield. For more information, please contact digitalcommons@fairfield.edu.
CHANGES IN THYMIDINE INCORPORATION BY LARVAE OF THE AMERICAN OYSTER CRASSOSTREA VIRGINICA (GMELIN) AFTER CHALLENGE BY TWO SPECIES OF YEAST (CANDIDA)

PHYLLIS C. BRAUN¹, THEODORE J. COMBS¹, AND WALTER J. BLOGOSLAWSKI²
¹Department of Biology
Fairfield University
Fairfield, Connecticut 06430
²National Marine Fisheries Service
Northeast Fisheries Center
Milford Laboratory
Milford, Connecticut 06460

ABSTRACT Larval cultures of the American oyster Crassostrea virginica were challenged with the yeasts Candida albicans (Robin) and C. tropicalis (Castellani). After 48 hr, microscopic examination revealed abnormal shell development and reduced size for the oyster larvae. The results from autoradiographical studies using ³H leucine indicate that C. albicans and C. tropicalis were ingested by the larvae. Oyster injury caused by the experimental yeasts was determined by measuring ³H thymidine incorporation. During an 8-hr incubation, larvae challenged with various numbers of yeast cells exhibited a 16 to 78% decrease of ³H thymidine incorporation compared to unchallenged control oysters. This test provides a simple and rapid measurement of metabolic injury.

KEY WORDS: Candida, Crassostrea, oyster, yeast, thymidine, shell development

INTRODUCTION

It has been reported that human-associated yeast cells are present in the waters of Long Island Sound (Combs et al. 1971). This finding was consistent with the report of Fell and Van Uden (1963) who noted that, in general, yeasts are found in littoral waters with high organic content. Furthermore, Buck et al. (1977) and Buck (1981) found a total of 28 species of human-associated yeasts in adult native populations of the American oyster Crassostrea virginica (Gmelin), the northern quahog Mercenaria mercenaria (Linné), and the blue mussel Mytilus edulis (Linné). The literature, however, reveals no studies that investigated a possible pathological association between yeast cells and bivalve molluscs. Such an association might be suspected as certain other fungal types are known to cause serious infections of commercially important bivalves, including C. virginica (Davis et al. 1954, Sindermann 1970).

In 1981, Combs et al. first reported significant alterations of oyster larvae due to challenge by Candida species. Radioactive-labeling techniques were also described in their report which became the impetus for the present investigation.

The purpose of this investigation was to determine whether two human-associated yeasts, Candida albicans (Robin) and Candida tropicalis (Castellani), were capable of interfering with the normal development of the larvae of Crassostrea virginica during an aquatic bioassay. The assay consists of exposing oyster larvae to tritiated (³H) thymidine in the presence of the appropriate yeast. By quantifying the rate of incorporation of an exogenously added, radioactive nucleoside, changes were observed in DNA synthesis. A similar technique was recently cited by Jackim and Nacci (1984) for embryos of the sea urchin Arbacia punctulata (Lamarek).

MATERIALS AND METHODS

Candida albicans and Candida tropicalis

Freshly transferred stock cultures of Candida albicans (ATCC 10231) and Candida tropicalis (ATCC 750) were grown at 37°C and maintained at 4°C on brain-heart infusion slants. In our laboratory, routine use of brain-heart infusion media extended the transfer time of these yeasts to 30 days versus 14 days for most other media. The inoculum for all experiments was obtained in the following manner: C. albicans or C. tropicalis were grown at 37°C for 18 hr on brain-heart infusion agar plates. Yeast cells were collected in 0.9% saline (wt/vol), centrifuged (3,000 x g, 4°C) for 10 min, washed twice, and then harvested and suspended in 0.9% saline. Yeast cells were counted using a hemocytometer.

Bioassays of Crassostrea virginica

The pathogenicity of each of the yeast isolates to freshly fertilized eggs of the American oyster was examined by bioassay of the resulting larvae. The initial step in the procedure was to inoculate yeasts on brain-heart infusion slants and incubate them overnight (18 to 24 hr) at 37°C. Broodstock oysters that were maintained at the NMFS
Milford Laboratory were induced to spawn by gradually raising the water temperature (Loosanoff and Davis 1963), and eggs were fertilized and counted. An inoculum of 15,000 freshly fertilized eggs was added to 1 l of Millipore-filtered, UV-treated seawater (MUVSW) in glass beakers kept in a constant-temperature incubator at 26°C as recommended by ASTM (1980). Subsequently, an appropriate inoculum of resuspended yeasts was added from the 6.9% saline solution to attain an initial concentration of 1.5 to 2.0 x 10^6 count-forming units per ml in the challenge beakers. Cultures were maintained for 48 hr, which allowed ample time for normal development to the straight-hinge, shelled veliger stage of C. virginica. Controls for the challenge beakers consisted of fertilized egg cultures without added yeast cells.

After 48 hr, cultures were sampled by screening the contents through a 36-μm nylon mesh screen, resuspending the trapped larvae in 200 ml of filtered seawater, then collecting a 2-ml aliquot, rinsing the pipet with 2 ml of seawater and preserving the sample with a few drops of 5% buffered formalin (Loosanoff and Davis 1963; Edwin Rhodes, NMFS Milford Laboratory, Milford, CT, pers. comm.). Samples were preserved as described above and examined with a compound microscope.

Larvae for challenge samples were counted and classified as normal or abnormal; normal larvae were "D"-shaped, which is typical for straight-hinge, 48-hr oyster larvae; abnormal larvae departed significantly from the normal "D" shape (Figure 1). Larvae were further classified as to whether they were alive or dead prior to fixing; live larvae have tissue with a darkened central gut and dead larvae are devoid of the tissue. The percent of normal development in experimental cultures was computed relative to that in control cultures and those isolates which caused greater than 80% mortality were considered suspect and examined further. Percent mortality was calculated as the number of surviving experimental larvae divided by number of live larvae in the control x 100.

Larvae were challenged with either yeast, C. albicans or C. tropicalis, in a larvae:yeast ratio of 1:190 for 48 hr of microscopically counted cells. Incorporation of 3H leucine is a standard method of measuring protein synthesis (Bogoroch 1972). Using the larval oyster bioassay method described earlier, approximately 0.1 ml of each was viewed under light microscopy. Subsequently, 1 ml of each suspension (C. albicans or C. tropicalis, oyster larvae, C. tropicalis or C. albicans with oyster larvae) was placed on coverslips dipped in 1% bovine serum albumin and allowed to settle for 90 min (25°C). Tritiated (3H) leucine (6 Ci/mmol - New England Nuclear, Boston, MA) was then added to each coverslip and incubated for an additional 30 min at 25°C. The incorporation of radioactive leucine was stopped with 95% ethanol. Each coverslip was dried and dipped into melted Ilford K-2 emulsion as described by Braun and Calderone (1978). Coverslips were exposed for 14 days (4°C) and then stained with 1% methylene blue.
Effect of C. albicans and C. tropicalis on Incorporation of \(^3\)H Thymidine by Crassostrea virginica

Culture tubes contained a cell suspension of either Crassostrea virginica (1.2 x 10^6 cells), Candida albicans, Candida tropicalis, or both a yeast and larvae mixture in a total volume of 2 ml MUVSW. Crassostrea virginica was challenged with a yeast culture in 1:5, 1:100, and 1:1000 (larvae:yeast) ratio. All cultures were incubated with \(^3\)H thymidine (101.0 Ci/mmole - New England Nuclear, Boston, MA) at 29°C. At designated intervals, duplicated cell suspensions were precipitated on ice with cold 15% trichloroacetic acid (TCA) and washed with absolute ethanol. Nonspecific trapping of label was determined by labeling cultures on ice and precipitating immediately with 15% TCA. Subsequently, all precipitated cultures were filtered onto glass fiber filters (Whatman GF/A) and washed with cold 95% ethanol.

All radioactive measurements were made using a Hewlett Packard Model 3380 liquid scintillation counter in scintillation liquid (0.1 g of p-bis-[5-phenyloxazolyl] benzene and 5 g of 2.5 diphenyloxazole dissolved in 1.0 l of scintillation grade toluene).

Calculations to determine the inhibitory effect of Candida albicans and C. tropicalis on incorporation of \(^3\)H thymidine by Crassostrea virginica were as follows: the counts per minute (cpm) from the appropriate controlled yeast cultures were subtracted from the cpm obtained from the larval cultures and C. albicans or C. tropicalis incubated together. This figure representing C. virginica specific incorporation when incubated with a yeast was compared with the cpm obtained from cultures of C. virginica incubated without a yeast using the methods of Peterson and Calderone (1977).

RESULTS

After the 48-hr period, both challenged and unchallenged larvae were examined under light microscopy. Figure 1 represents the live normal unchallenged larva next to a larva that was challenged with Candida albicans. This live abnormal animal has impaired shell development and reduced size.

Autoradiographic studies of Crassostrea virginica showed that Candida albicans (Figure 2a) and C. tropicalis were ingested. Because of the TCA precipitation, the natural larval morphology was markedly altered (Figure 2b), and yeast cells were revealed in the gut area. It is evident from the heavy grain concentrations, which are indicative of leucine incorporation into tissue, that the challenged larvae continued to incorporate \(^3\)H leucine after yeast ingestion. Comparisons between control larvae and challenged larvae for incorporation of this radioactive label indicated that protein synthesis by the challenged larvae did not appear to decrease. Both Candida species also incorporated \(^3\)H leucine into their protein and after numerous slide examinations it was concluded that there was no decrease in grain development by the ingested yeasts when compared to controls.
significant decreases of nucleoside incorporation by oyster larvae were considered to be an ex­
ceptible method to measure yeast-induced injury. To quantify the effect of Candida albicans on Crassostrea virginica, various larvae:yeast ratios were used. As shown in Figure 4, significant decreases of nucleoside incorporation by C. virginica occurred. As the larvae:C. albicans ratio increases from 1:5, 1:100, and 1:1000, it reflects a mean decrease of 3H thymidine incorporation of 16, 34, and 70%, respectively. After the 8-hr incubation, similar results were observed when C. tropicalis was employed as the challenge organism. Using the same larvae:yeast ratios, C. tropicalis inhibited the incorporation of radioactive thymidine by oyster larvae by means of 20, 40, and 78%, respectively (Figure 5).

DISCUSSION

The results presented herein indicate that the larvae-yeast association does produce abnormal development of larvae of C. virginica. We propose three possibilities that, at least partially, may account for the observed shell deformi­ties. First, normal larval developmental mechanisms may have been altered by some byproduct of yeast metabolism. Second, since yeast cell walls, including Candida sp., contain highly polymerized glucons and mannans (Farkas 1979), it is possible that oyster larvae were unable to digest them (Tripp 1958, 1960) and, thus, abnormal shell development was simply one manifestation of a general pattern of starvation. Third, an invasion of larval tissue by yeast cells took place; in the case of C. albicans this explanation is unlikely because invasion is usually accompanied by germ tube development (Reynolds and Braude 1956). None was seen in this study.

The finding that incorporation of 3H thymidine by larvae decreased with increases in yeast cell numbers strongly indi­cates that a larvae-yeast interaction did take place. Tritiated thymidine is an efficient and sensitive method to determine metabolic injury. This bioassay demonstrated a decrease in thymidine incorporation which is directly proportional to inhibition of DNA synthesis. It might also be emphasized that both Candida species produced similar decreases in the percentage of 3H thymidine incorporated at comparable larval:yeast ratios.

It is conceivable that metamorphosing larvae of C. virginica might be subject to the same type of injury as observed in this study since C. albicans and C. tropicalis gain entrance to marine waters through fecal pollution. This conclusion is underscored by the observation that as few as five yeast cells per larva—an attainable level found in contami­nated waters—caused significant metabolic changes in the developing oyster.

ACKNOWLEDGMENTS

This work was partially supported by a Fairfield University Faculty Research Grant to P.C.B. and by U.S. Department of Commerce Contract No. NA-796-AC-00020 to T.J.C. The authors appreciate the technical help of Scott Wilson and the editorial assistance of Rita Riccio.

NOTE: Use of trade names in no way implies endorsement of commercial products by Fairfield University or the National Marine Fisheries Service.
REFERENCES CITED

