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a b s t r a c t 

When internal waves interact with topography, such as continental slopes, they can transfer wave en- 

ergy to local dissipation and diapycnal mixing. Submarine canyons comprise approximately ten percent 

of global continental slopes, and can enhance the local dissipation of internal wave energy, yet param- 

eterizations of canyon mixing processes are currently missing from large-scale ocean models. As a first 

step in the development of such parameterizations, we conduct a parameter space study of M2 tidal- 

frequency, low-mode internal waves interacting with idealized V-shaped canyon topographies. Specifi- 

cally, we examine the effect of varying the canyon mouth width, shape and slope of the thalweg (line 

of lowest elevation) (i.e. flat bottom or near-critical slope). In Part 1 of this study ( Nazarian and Legg, 

2017a ), we developed a ray tracing algorithm and used it to estimate how canyons can increase the 

wave Froude number, by increasing energy density and increasing vertical wavenumber. Here in Part 2 

we examine the internal wave scattering in continental slope canyons using numerical simulations, and 

compare the results with the linear ray tracing predictions. We find that at intermediate canyon widths, 

a large fraction of incoming wave energy can be dissipated, which can be explained as a consequence of 

the increase in ray density and, for near-critical slope canyons, increase in vertical wave number, which 

leads to lower Richardson number followed by instability. Relative to a steep continental slope without 

a canyon, we find that V-shaped flat bottom canyons always dissipate more energy and are an effective 

geometry for wave trapping and subsequent energy loss. When both flat bottom canyons and near-critical 

slope canyons are made narrower, less wave energy enters the canyon, but a larger fraction of that en- 

ergy is lost to dissipation due to subsequent reflections and wave trapping. There is agreement between 

the diagnostics calculated from the numerical model and the linear ray tracing, lending support for the 

use of linear theory to understand the fundamental dynamics of internal wave scattering in canyons. 

© 2017 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Internal waves are efficient transmitters of energy across ocean 

basins. As internal waves propagate away from their generation 

site, they may encounter the continental slope, where they can 

break and lead to diapycnal mixing. One of the continental slope 

features that can induce wave breaking are continental slope 

canyons. Despite observations highlighting their potential to be 

a sink of internal tidal energy, continental slope canyons have 

been largely overlooked by the modeling community ( Bosley et al., 

20 04; Bruno et al., 20 06; Codiga et al., 1999; Gardner, 1989; Gor- 

don and Marshall, 1976; Gregg et al., 2011; Hall and Carter, 2011 ; 

∗ Corresponding author. 

E-mail address: rn2@princeton.edu (R.H. Nazarian). 

Hotchkiss and Wunsch, 1982; Lee et al., 20 09a; 20 09b; Petruncio 

et al., 1998; Vlasenko et al., 2016; Waterhouse et al., 2013; Xu and 

Noble, 2009 ). Here, we put forth a parameter space sweep to bet- 

ter understand the processes involved in internal wave scattering 

and mixing in continental slope canyons. 

In conducting this parameter space study of internal wave scat- 

tering in continental slope canyons, our overarching goal is to con- 

tribute to the development of parameterizations of mixing by in- 

ternal wave breaking. Such parameterizations, regardless of the to- 

pography for which they are applied, are increasingly formulated 

in terms of the global energy budget for internal waves. Parame- 

terizations have been developed from the entire lifecycle of inter- 

nal waves; from their generation at regions of rough topography 

( Buijsman et al., 2012 ) to their propagation over ocean basins and 

interaction with other waves and eddies ( MacKinnon et al., 2013; 

Polzin, 2008 ), as well as their eventual breaking at topographic 

http://dx.doi.org/10.1016/j.ocemod.2017.07.005 

1463-5003/© 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. Two classes of V-shaped canyons analyzed in this study. (a): near-critical 

slope canyon, (b): flat bottom canyon. Note that throughout our suite of experi- 

ments, angle ζ is varied identically for both class of canyons. Thus, the two differ- 

ent classes of V-shaped canyons are different in angle α only. The sidewalls of each 

canyon have isobaths, or lines of constant depth, drawn for clarity. (For interpre- 

tation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

features in the ocean interior or continental slope ( Klymak et al., 

2013; Legg, 2014 ). These studies have used a full internal wave en- 

ergy budget to study the scattering effects of various, isolated, to- 

pographies ( Klymak et al., 2013; Legg, 2014 ). By accounting for all 

terms in the energy budget, such studies have provided useful scal- 

ings for instability and turbulent dissipation based on properties of 

the topography; namely, the ratio of topographic height to the do- 

main depth, the topographic width, and the relative topographic 

steepness. Given that mixing in the ocean is strongest around re- 

gions of varying topography ( Polzin et al., 1997 ), and the location 

and magnitude of such mixing has ramifications for the large-scale 

ocean circulation ( Melet et al., 2016 ), it is important for the for- 

mulation of ocean model mixing parameterizations to understand 

which and how topographic parameters modulate mixing. It is thus 

crucial to understand how much of the internal wave energy that 

encounters the continental slope topography is lost to mixing and 

dissipation. Our study analyzing the topographic dependence of in- 

ternal wave dissipation is one component of this overall under- 

standing. 

Table 1 

Summary of parameters of interest for all simulations. 

α ζ ( °) H (m) L (m) ω 

2 (10 −8 s −2 ) N 

2 (10 −6 s −2 ) 

αnear-critical 19.9 100 744 1.99 1.00 

26.1 100 744 1.99 1.00 

30.8 100 744 1.99 1.00 

35.9 100 744 1.99 1.00 

46.2 100 744 1.99 1.00 

52.3 100 744 1.99 1.00 

64.4 100 744 1.99 1.00 

73.5 100 744 1.99 1.00 

76.5 100 744 1.99 1.00 

80.0 100 744 1.99 1.00 

83.2 100 744 1.99 1.00 

88.3 100 744 1.99 1.00 

90 ° 19.9 100 744 1.99 1.00 

26.1 100 744 1.99 1.00 

30.8 100 744 1.99 1.00 

35.9 100 744 1.99 1.00 

46.2 100 744 1.99 1.00 

52.3 100 744 1.99 1.00 

64.4 100 744 1.99 1.00 

73.5 100 744 1.99 1.00 

76.5 100 744 1.99 1.00 

80.0 100 744 1.99 1.00 

83.2 100 744 1.99 1.00 

88.3 100 744 1.99 1.00 

While our study is motivated by observations of mixing in ac- 

tual continental slope canyons, we begin by focusing on idealized 

V-shaped canyons in order to tease out the fundamental dynam- 

ics. In Part 1 of this study, we developed a ray-tracing algorithm 

which we used to explore the impact of canyon geometry on ray 

focusing and wave number in a linear context ( Nazarian and Legg, 

2017a ). We used the ray tracing algorithm to gain a first-order un- 

derstanding of the physical processes than can lead to instability 

in canyons as well as understand the regime where waves become 

nonlinear. Here in Part 2 we will compare the predictions of this 

linear ray tracing algorithm with fully nonlinear numerical simu- 

lations of internal waves scattering in identical canyon geometries 

using the Massachusetts Institute of Technology global circulation 

model (henceforth MITgcm). The idealized canyons we have cho- 

sen to analyze are oversimplifications of real canyon bathymetry; 

however our focus here is not to capture every detail of particular 

wave-topography interaction, but to explore the parameter space. 

In this part of our study, we explicitly diagnose the fraction of the 

incoming energy lost in the canyon, which is a quantity needed 

for parameterization development. The rationale for the V-shaped, 

idealized canyons that we have developed is described in Part 1. 

The goal of this study is to understand the parameter depen- 

dence of internal wave energy dissipation and develop a physical 

framework to extend this theory to more realistic canyon topogra- 

phies. We are particularly interested in the topographic parameters 

of canyon sidewall steepness ( α) and canyon aspect ratio ( ζ ). In 

the process we seek to understand and predict the spatial struc- 

ture of dissipation and determine the scenarios in which enhanced 

mixing is most likely. In this second part, we undertake a numer- 

ical parameter space study of idealized continental slope canyons 

and compare with theoretical predictions. We begin with a brief 

summary of the parameters of interest (covered in more detail in 

Nazarian and Legg, 2017a ) in Section 2 . In Section 3 , we describe 

the MITgcm setup and how the model compares with the ray trac- 

ing algorithm developed in Part 1. We also provide a full summary 

of the calculations used to diagnose energy loss in the model. In 

Section 4, we take a holistic view of the parameter space, and use 

a combination of both the ray tracing and numerical simulations 

to construct an argument for the parameter dependence of in- 

ternal wave breaking and dissipation in this idealized topography. 

We find that canyons are indeed efficient dissipators of incoming 
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internal wave energy. The primary mechanisms for energy loss in 

canyons are increases in ray density and vertical wavenumber. We 

additionally confirm the robustness of the ray tracing algorithm 

through comparison with the MITgcm. 

2. Review of parameter space 

In this study, we consider two parameters related to the to- 

pography. Specifically, we consider the canyon aspect ratio, or the 

canyon length relative to the canyon width, expressed through an- 

gle ζ . The second parameter that we consider is α, the canyon 

sidewall steepness. We are primarily interested in α as it compares 

to the internal wave slope (i.e. the relative topographic steepness). 

Omitting rotation, we express this steepness as 

s = 

| tan α| 
| ω / 

√ 

N 

2 − ω 

2 | (1) 

where N is the buoyancy frequency and ω is the wave frequency. 

For our simulations we consider the dominant tide, which is the 

lunar semidiurnal tide (M2). 

We have two classes of V-shaped canyons, that are distin- 

guished only by their thalweg steepness, αt . The first class of 

canyons has a thalweg steepness that is near-critical and so, by 

construction, near-critical to supercritical sidewalls. The second 

class of canyons has vertical walls, which are thus very supercriti- 

cal. The second parameter of interest is the canyon aspect ratio, ζ , 

which is varied systematically for both canyons (i.e. we run simu- 

lations for both classes of canyons for each ζ value). We modulate 

ζ by adjusting the canyon width only. Both canyons have a fixed 

height, H , of 100 m and a fixed length, L , of 744 m. See Fig. 1 for 

the geometry of the two canyon classes. In Fig. 1 , isobaths, or lines 

of constant depth, are overlaid on the sidewalls to make clear that 

the canyons vary in αt . Parameters of interest, both topographic 

and those for the wave and ambient fluid, are listed in Table 1 , as 

well as their corresponding values for the submarine canyons con- 

sidered in this study. 

3. Methods 

A two-pronged approach is taken to study the internal wave 

breaking dynamics in idealized V-shaped canyons: (i) a suite of 

numerical simulations using the MITgcm and (ii) a linear ray trac- 

ing algorithm using the theory developed in Part 1 ( Nazarian and 

Legg, 2017a ). When used in tandem, we can gain an understanding 

of the parameter space dependence of internal wave-driven mix- 

ing in these idealized canyons. Both the ray tracing algorithm and 

numerical simulations are set up identically for all canyon simu- 

lations, regardless of the topography class in which they fall. In 

Part 1 of this study ( Nazarian and Legg, 2017a ), we describe the 

ray tracing algorithm. Here, we provide an overview of the MIT- 

gcm numerical simulations. 

A suite of numerical simulations is conducted using the MIT- 

gcm model ( Marshall et al., 1997 ). The MITgcm is ideal for this 

problem due to its non-hydrostatic capabilities, arbitrary topogra- 

phy and open boundaries ( Klymak et al., 2013; Legg, 2014; Legg 

and Adcroft, 2003; Nikurashin and Legg, 2011 ).All simulations are 

conducted in 3D ( x, y, z ) with flow allowed in all three directions. 

The lowest-mode internal wave is forced at the Western Boundary 

and propagates Eastward toward the variable canyon topography 

( x = 0 ), at which point it can reflect, scatter and refract. Any part 

of the wave that makes it past the topography is allowed to exit 

the domain at the Eastern Boundary via radiative (Orlanski) bound- 

ary conditions. The Southern and Northern boundaries ( y = −L y / 2 

and y = + L y / 2 , respectively) are equipped with periodic boundary 

conditions. The Western boundary has a sponge layer 20 grid cells 

wide so that any wave that is reflected back from the topography 

Fig. 2. Instantaneous snapshots of the density perturbation taken along the center 

of a near-critical slope canyon with ζ = 30 ◦, taken at three equally spaced intervals 

over one tidal cycle ( T ): at (top) 4.25, (middle) 4.625 and (bottom) 5 tidal cycles, 

respectively. The wave propagates into the domain from the Western boundary, in- 

teracts with the topography and is allowed to radiate freely out through the Eastern 

boundary ( x and y are aligned with longitude and latitude, respectively). Snapshots 

taken from the high-resolution simulation. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 

towards the generation site does not impact the generation of the 

wave. We employ a no normal flow boundary condition, as well as 

a free slip boundary condition above the full bottom topography 

(i.e. flat ocean interior, continental slope canyon and shelf) and a 

linear free surface ( z = 0 ). 
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The wave is forced with the M2 tidal frequency ( ω = 1 . 41 ×
10 −4 s −1 ). We neglect the effects of rotation (i.e. f = 0 ; we dis- 

cuss the assumption of no rotation in detail in Section 5 ). All 

simulations have a constant background density stratification of 

N 

2 = 10 −6 s −2 . Since both ω and N 

2 are fixed, the wave steep- 

ness is also fixed. Additionally, since the stratification is constant 

and the height of the canyon is half the height of the total ocean 

depth, by WKB scaling, these canyons are of similar effective ver- 

tical dimension to canyons in the real ocean in which there is 

non-uniform stratification, with largest stratification concentrated 

near the surface. This yields a non-uniform wave velocity in z with 

the wave amphidromic point (or the point in the vertical at which 

the horizontal velocity changes sign) at about the maximum topo- 

graphic height of the canyon. With our constant stratification, this 

amphidromic point is shifted to half depth, which is the maximum 

height of our topography and thus in broad agreement with real- 

ity. Both this order of magnitude of stratification and the relative 

constancy of stratification through the water column is observed 

at the mouth of La Jolla Canyon (Hamann, personal communica- 

tion). Given that stratification is constant, waves cannot achieve 

both subcritical and supercritical reflection off the bottom of our 

V-shaped topography, and thus cannot form a true wave trap, al- 

though multiple reflections are still possible with the wave poten- 

tially breaking after such reflections ( Maas et al., 1997 ). 

Given the small scales of overturning we use a stretched grid 

to concentrate most of the resolution at the topography and use 

the coarsest resolution possible away from the topography to re- 

solve the incoming wave. Such a setup allows us to complete an 

ensemble of simulations while minimizing the computing costs. In 

the low resolution model runs, �x varies from 77 to 3 m, �y is 

a constant 44 m and �z is a constant 4 m (corresponding to a 

grid size of 850 × 100 × 50). The high resolution simulations have 

�x varying from 78 to 2 m, �y varying from 41 to 2 m and �z a 

constant 2 m (corresponding to a grid size of 1700 × 200 × 100, 

exactly double that of the low resolution simulations). At the vari- 

able canyon topography, all grid boxes are 2 m × 2 m × 2 m. 

The turbulent overturning length scales that we aim to capture in 

the canyon can be characterized by the Ozmidov scale, which is 

given as L O = 

√ 

ε/N 

3 , where ε is the turbulent dissipation rate. Us- 

ing an elevated level of turbulent dissipation of 10 −6 m 

2 /s 3 , which 

is the average maximum dissipation rate seen throughout our suite 

of canyon simulations, we arrive at an Ozmidov scale of approxi- 

mately 32 m, which both high and low resolution simulations re- 

solve in the canyon region. Since canyons are symmetric and we do 

not consider rotation (i.e. f = 0 ), we could have placed a free-slip 

wall in the center of the canyon, at y = 0 , to conduct the simula- 

tions with half the number of grid points. We choose not to take 

this approach so that the model configuration is generalizable for 

future simulations with realistic, non-symmetric canyon topogra- 

phy and rotational effects ( f > 0). 

Low resolution experiments are hydrostatic, while high resolu- 

tion experiments are conducted using the MITgcm non-hydrostatic 

capabilities. Since the high resolution simulations begin to re- 

solve the lengthscales of overturning, it is appropriate to turn on 

the non-hydrostatic capability as mixing is fundamentally a non- 

hydrostatic process. A comparison of the hydrostatic and non- 

hydrostatic results is presented in Section 5 . A final difference be- 

tween the low resolution and high resolution simulations is the 

forced wave velocity amplitude. In the low resolution cases, this 

amplitude is 2 cm/s, while it is 1.2 cm/s in the high resolu- 

tion cases. This slight modification was done to make the already 

costly high resolution simulations more efficient while satisfying 

the CFL criterion (i.e. u max 
� t 

� x min 
< 1 where u max is the maximum 

flow speed). Low resolution simulations at this decreased forcing 

frequency were also conducted to test whether any differences 

between low and high resolution simulations are amplitude depen- 

dent or dependent on the higher resolution and non-hydrostatic 

configuration. See Figs. 2 and 3 for density snapshots along the 

center of the domain from two of the high resolution simulations. 

The initial Froude number, Fr 0 is 0.32 for the low resolution sim- 

ulations and 0.19 for the high resolution simulations, safely un- 

der the threshold of unity indicating stable initial flow and lin- 

ear waves. Both low and high resolution simulations have a time 

step of 1 s, a horizontal kinematic viscosity of 10 −2 m 

2 /s and a 

vertical kinematic viscosity of 10 −3 m 

2 /s. The value of scalar diffu- 

sivity is set to zero and no turbulence model is used. A one-step, 

seventh-order monotonicity preserving advection scheme is used, 

which minimizes numerical diffusion. 

In order to reach a quasi-steady state, all simulations are run for 

8.5 days. It takes the first 4 days of the simulations for the waves 

to reach the topography and begin to reflect and refract. Around 

day 4, the wave energy flux over the canyon and continental shelf 

attains an approximately constant value, and thus a quasi-steady 

state is reached. All analysis uses the last 4.5 days (i.e. from tidal 

cycle seven onwards) to insure all transient effects are omitted. 

Three diagnostics are used to analyze the MITgcm numerical 

simulations. The first two diagnostics are derived (as in Cummins 

and Oey, 1997; Kurapov et al., 2003; Kang and Fringer, 2012; Bui- 

jsman et al., 2012 ) from the baroclinic energy equation 〈
∂ 

∂t 
(KE + AP E) 

〉
+ 〈 ∇ · F 〉 = 〈 C〉 − 〈 D 〉 − 〈 M〉 (2) 

where the first term is the tendency of the kinetic and linear avail- 

able potential energies, the second term is the divergence of the 

energy flux, the third term is the conversion from barotropic to 

baroclinic and vice versa, the fourth term is the dissipation and 

the fifth term is the diapycnal mixing, or residual. The bracket no- 

tation indicates that these are tidally averaged quantities. All of 

these canyon-integrated quantities are shown as a function of the 

tidal cycle in the MITgcm, in Fig. 4 and inform our assessment of 

a quasi-steady state being reached at the seventh tidal cycle. 

For the first term, the kinetic energy, KE , can be expressed as 
1 
2 ρ0 (u ′ 2 + v ′ 2 + w 

′ 2 ) and the linear available potential energy, APE , 

can be expressed as g 2 ρ′ 2 /(2 ρ0 N 

2 ) where ρ0 is the constant den- 

sity of 999.8 kg/m 

3 , ( u ′ , v ′ , w 

′ ) is the 3D wave velocity field, g is the 

standard gravitational acceleration of 9.81 m/s 2 and ρ′ is the per- 

turbation density, expressed as ρ ′ (x, y, z, t) = ρ(x, y, z, t) − ρb (z) , 

where ρb ( z ) is the background density profile at model initializa- 

tion. Since the system is in a quasi-steady state, the first term in 

(2) (i.e. the tendency of the energy) tends to zero, as shown in 

Fig. 4 . 

The second term of (2) is the divergence of the energy flux. 

Given that there is no barotropic flow, this flux can be cast as 

F = u 

′ p ′ + u 

′ KE + u 

′ AP E − μH ∇ KE (3) 

where p ′ is the pressure anomaly associated with the wave and μH 

is the model’s horizontal viscosity (a constant value of 0.01 m 

2 /s). 

There is no explicit contribution from the gradient of the available 

potential energy, as both the horizontal and vertical components of 

diffusion are set to be a constant value of 0 in the model. Thus, the 

flux is composed of three main contributions: pressure work (the 

first term in (3) ), the advection of energy (the second and third 

terms in (3) ) and horizontal diffusion (the fourth term in (3) ). 

Energy conversion, the third term in (2) can be expressed as 

C = p ′ −H W (4) 

where p ′ −H is the pressure evaluated at the topography and W is 

the vertical barotropic velocity (i.e. W = −U · ∇ H, with U being the 

horizontal component of the barotropic flow). For our case of re- 

motely generated internal waves, C is a sink term, and found to be 

small (again see Fig. 4 ). 
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Fig. 3. Instantaneous snapshots of the density perturbation taken along the center 

of a flat bottom slope canyon with ζ = 30 ◦, taken at three equally spaced intervals 

over one tidal cycle ( T ): at (top) 4.25, (middle) 4.625 and (bottom) 5 tidal cycles, 

respectively. The wave propagates into the domain from the Western boundary, in- 

teracts with the topography and is allowed to radiate freely out through the Eastern 

boundary ( x and y are aligned with longitude and latitude, respectively). As seen in 

the progression of the density field, the wave can also partially reflect back towards 

the Western boundary. Snapshots taken from the high-resolution simulation. (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 4. All terms in energy budget, (2) , respectively, using MITgcm model output 

integrated over the canyon volume for a near-critical slope canyon of ζ = 35 . 9 ◦ . 

Note that a quasi-steady state (the point at which the tendency term becomes small 

compared to other terms) is reached around the seventh tidal cycle (dashed line) 

and all calculations are taken from tidal cycle seven to tidal cycle sixteen. The resid- 

ual term is calculated as the sum of the tendency, flux divergence and dissipation 

minus conversion so that Eq. (2) is satisfied. Thus, diapycnal mixing is not explicitly 

calculated. All terms are calculated as a moving average over one tidal period. (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

Following the derivation of Kurapov et al. (2003) and the no- 

tation of Buijsman et al. (2012) , dissipation, the fourth term in 

(2) can be expressed as 

D = ρ0 

{
μH 

([ 
∂ u 

′ 

∂x 

] 2 
+ 

[ 
∂ u 

′ 

∂y 

] 2 )
+ μV 

[ 
∂ u 

′ 

∂z 

] 2 }
(5) 

where μV is the vertical viscosity, set to a constant of 0.001 m 

2 /s. 

For both the energy flux, (3) , and dissipation, (5) , the vertical ve- 

locity perturbation, w 

′ is omitted from the hydrostatic simulation 

diagnostics and is included in diagnostics for the nonhydrostatic 

simulations. The fifth term in (2) is the diapycnal mixing term and 

is very difficult to accurately capture through model diagnostics. 

Given that it is a small contribution to the overall energy budget, 

it is evaluated as a residual (see Fig. 4 ). 

If the tendency, conversion and diapycnal mixing terms (i.e. 

∂ / ∂ t, C and M , respectively) are small, then for a remotely gen- 

erated internal wave with no background, barotropic flow, (2) re- 

duces to 

〈 ∇ · F 〉 = −〈 D 〉 + K (6) 

where K is the residual term, resulting from any small energy 

conversion from the baroclinic to the barotropic, any small devi- 

ation of the energy tendency in the tidal average, a small contri- 

bution from diapycnal mixing and numerical dissipation as well 

as any small errors related to conducting these calculations offline 

( Buijsman et al., 2012 ). We then take a volume integral of (6) over 

the canyon region and, after applying Gauss’ Theorem, obtain � 

S(V ) 

〈 F 〉 · ˆ n d S = −
�  

V 

〈 D 〉 d V + K (7) 

where V is the canyon volume, S ( V ) are the surfaces, or faces, of 

that canyon volume and K is the volume-integrated residual. This 

equality provides the setup for calculating our first two diagnostic 

quantities, which we refer to as E 1 and E 2 . 

E 1 is the left-hand side of (7) . Based on our model configura- 

tion, we calculate this as 

E 1 = 

〈{ [∫ 
H 

∫ 
( d−c ) 

F x d yd z 

]b 

a 

−
[∫ 

H 

∫ 
( b−a ) 

F y d xd z 

]d 

c 

} 〉
(8) 

where F x and F y are the x - and y -components of the energy flux 

(3) , respectively, H is the topographic depth, a corresponds to the 

face before the canyon mouth (open ocean), b corresponds to the 
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Fig. 5. Schematic of the region over which the volume-integrated divergence of the 

energy flux, E 1 , is calculated for all simulations. The divergence of the energy flux is 

the difference between the incoming flux normal to the mouth of the canyon and 

the flux out of the canyon. Note that the faces a, b, c and d are the same bounds 

used to calculate the volume-integrated dissipation, E 2 . (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 

face after the canyon head (continental shelf), c corresponds to the 

face flanking the Southern-most point of the canyon and d corre- 

sponds to the face flanking the Northern-most point of the canyon 

(see Fig. 5 for a schematic of this setup). Faces c and d are taken at 

the edge of the canyon, while faces a and b are taken just before 

and after the canyon, respectively, to include all canyon-induced 

energy loss. This x -extent of energy loss due to the canyon will 

be further discussed in Section 4 . Thus, the divergence of the en- 

ergy flux, E 1 , is the difference between the energy flux leaving the 

canyon region (primarily through faces b, c and d , with some back- 

wards reflection also occurring through face a ) and the energy flux 

initially entering the canyon region through face a . Inward and out- 

ward energy fluxes through face a are not calculated separately, 

rather the net flux at a is calculated with the directionality of the 

flux being determined by the sign of the zonal velocity. 

The second diagnostic, E 2 , is the dissipation, which is present 

on the right-hand side of (7) . Based on our model setup, the vol- 

ume integral of dissipation in (7) can be rewritten with the proper 

boundaries as 

E 2 = 

〈 ∫ 
H 

∫ 
( d−c ) 

∫ 
( b−a ) 

{ 

μH 

[ (
∂ u 

′ 
∂x 

)2 

+ 

(
∂ u 

′ 
∂y 

)2 
] 

+ μV 

(
∂ u 

′ 
∂z 

)2 } 

d xd yd z 

〉 
(9) 

Recall that, for the hydrostatic simulations, the w 

′ term in both 

(8) and (9) is omitted. Both E 1 and E 2 have 8 outputs per tidal 

cycle (12 hours) and are both averaged over each cycle to remove 

the tidal variability. There are thus 9 different E 1 and E 2 values 

per experiment. These values are again averaged to obtain E 1 and 

E 2 , with associated errors quantified by calculating the standard 

deviation of the mean. 

In the ray tracing model, we calculate the Froude number using 

the velocity associated with the wave. However, in MITgcm sim- 

ulations, the wave component cannot be differentiated from other 

motion, so the wave Froude number cannot be determined in these 

simulations. Instead we use the Richardson number, which is not 

Fig. 6. Fraction of incoming wave energy dissipated in the canyon region. Also in- 

cluded are the near-critical slope and vertical wall controls, marked at ζ = 0 ◦ . (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

particular to the wave, as the third and final diagnostic for the nu- 

merical model. 

The Richardson number is the ratio of the stratification to the 

square of the shear. Mathematically, it can be cast as 

Ri = 

N 

2 

S 2 
(10) 

where S 2 = (∂ u 

′ 
H 
/ ∂z · ∂ u 

′ 
H 
/ ∂z ) and u 

′ 
H 

is the horizontal component 

of wave velocity, ( u ′ , v ′ ), which is easily calculated for all stratifica- 

tions, including statically unstable scenarios. By the Miles–Howard 

criterion, linear stability of parallel shear flow requires Ri > 1/4; 

below this Richardson number the destabilizing effect of shear can 

overcome the stabilizing effect of stratification ( Yih, 1980 ). Our 

scenario is not one of parallel shear flow, and this value of crit- 

ical Richardson number is not generally applicable for all flows 

( Galperin et al., 2007; Lamb and Farmer, 2011 ); nonetheless, we 

will use Ri < 1/4 as a guide to regions where instability is more 

likely. The spatial structure of the simulation’s minimum Richard- 

son number and turbulent dissipation nicely align. This agreement 

is not an artifact of the model, as there is no sub-grid scale scheme 

linking Richardson number and dissipation. Thus, despite the stud- 

ies illustrating variations of the Richardson number threshold for 

instability, the canonical value of 1/4 appears appropriate for our 

study. 

While we broadly expect the Richardson number in the model 

to be small in the same regions where the Froude number is large 

from the ray tracing, we may not expect a perfect match. Due to 

the fact that the output from the MITgcm is for the total fluid 

flow, and that the Froude number is implicitly a wave quantity, 

it is more appropriate to use the Richardson number to under- 

stand regimes of instability from the MITgcm output. Conversely, 

the Froude number is more appropriate to gain insight into the 

regimes of instability in the ray tracing algorithm since we are only 

considering the wave field. Additionally, the ray tracing only uses 

a constant stratification, whereas the stratification in the model 

can change in the presence of the internal wave, thus altering the 

Richardson number. Despite the differences, both quantities are the 

most appropriate way to diagnose the potential instability in each 

of the two different methodologies. 

In Section 4 , E 1 , E 2 and Ri will be used to quantify the wave 

breaking in the MITgcm and Fr , the Froude number, as well as its 
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Fig. 7. The maximum vertically summed increase in ray density as a function of the 

canyon width for flat bottom canyons (blue) and near-critical slope canyons (red). 

Dots indicate the values calculated for each value of ζ used in the canyon simu- 

lation. The relative maximum value for the flat bottom canyon occurs at ζ = 73 . 3 ◦

and the relative maximum for the near-critical slope canyon occurs at ζ = 26 . 1 ◦

(For interpretation of the references to color in this figure legend, the reader is re- 

ferred to the web version of this article.) 

component pieces of RD and m , ray density and vertical wavenum- 

ber, respectively, to quantify potential instability in the ray 

tracing algorithm (for a full discussion of the Froude number, ray 

density and vertical wavenumber, please see Part 1 of this study, 

Nazarian and Legg (2017a) ). 

4. Results 

We start with a presentation of the MITgcm results and use the 

ray tracing algorithm that we have developed to interpret the re- 

sults. Conversely, we use the MITgcm results to verify that the lin- 

ear ray tracing algorithm is a useful method for understanding the 

internal wave scattering problem in continental slope canyons. 

In order to study the relative enhancement of wave breaking 

and wave-driven mixing due to the canyons, we normalize the val- 

ues of E 1 and E 2 by the total energy being fluxed into the canyon 

region through the Western face (i.e. face a ). The energy flux into 

the canyon is calculated using a flat control simulation, so this 

incoming energy flux is not affected by any topographic reflec- 

tion. That is, we run a control simulation in which the topogra- 

phy is flat, and has a depth equal to the maximum depth present 

in the canyon simulations. This allows us to diagnose the incom- 

ing tidally-averaged wave flux without interference from reflected 

and refracted waves. The results for E 1 and E 2 are presented in 

Fig. 6 . In addition to the fraction of the energy lost in each of 

the canyons, Fig. 6 includes the fractional energy loss for two con- 

trol simulations; a near-critical slope (same criticality as the near- 

critical slope canyon thalweg) and a vertical wall (both denoted 

at ζ = 0 ◦). There are three main regimes in the fractional energy 

loss. In Regime 1, both classes of canyons maintain a relatively con- 

stant energy loss as ζ increases. Recall that this corresponds to 

a decrease in the canyon mouth width. Fig. 6 also illustrates an- 

other region we deem Regime 2, in which the fractional energy 

loss increases with increasing (decreasing) ζ (canyon width), albeit 

with a slight dip in the energy loss for near-critical slope canyons 

around ζ = 80 ◦. Finally, we have Regime 3 in which the fractional 

energy loss decreases for the flat-bottom canyons and increases 

slightly for the near-critical slope canyons with increasing ζ . The 

regime threshold of ζ = 83 ◦ is taken empirically from the model 

simulations. The analysis of the differences between the divergence 

Fig. 8. (Top) Minimum Richardson number for one tidal cycle and (middle) tidally 

averaged dissipation in the low-resolution, hydrostatic MITgcm simulation and (bot- 

tom) maximum Froude number from the ray tracing algorithm, taken along the cen- 

ter of a flat bottom canyon in the second regime. (Top) By the Miles–Howard crite- 

rion, all cyan regions can experience shear instability while navy regions addition- 

ally can experience convective instability. (Middle) There is generally good agree- 

ment between the regions of enhanced dissipation and Richardson number. Isopy- 

cnals (black lines) are drawn for reference and taken as a snapshot at T = 10 tidal 

cycles. (Bottom) Regions in which the Froude number is larger than unity are re- 

gions where instability can develop. Note that the canyon mouth is located at x = 0 

m. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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of the energy flux and the dissipation, as well as the occurrence of 

fractional energy losses greater than one, are left for Section 5 . 

We first investigate the case of the flat bottom canyon. From 

the ray tracing (Part 1), we know that for the first regime there is, 

at most, one ray reflection inside the canyon. Thus, these canyons 

are not efficient at trapping wave energy and causing the wave 

to break. This lack of wave focusing aligns with the results from 

Fig. 6 that there is only a moderate increase in the fraction of 

energy loss in these canyons versus the vertical wall control (i.e. 

ζ = 0 ◦). As ζ increases towards the threshold of 30 °, fewer rays 

are able to enter the canyon region due to the narrowing canyon 

mouth, which leads to the relatively steady fraction of energy loss. 

In addition to the intuition gained from the ray tracing, this pro- 

cess is coupled with mixing that takes place at the canyon lip, sim- 

ilar to the case at a vertical wall or knife-edge ( Klymak et al., 2013 ) 

(we illustrate this boundary mixing later, in Fig. 8 ). By incising a 

canyon into a vertical wall, we essentially extend the length of the 

vertical wall, thereby extending the length over which boundary 

mixing can occur. Thus, there is a moderate increase in the energy 

lost in these canyons compared to a homogeneous vertical wall, as 

wave focusing toward the canyon center can function as an addi- 

tional process leading to mixing. 

We now consider the second regime (30 ° < ζ < 83 °) for the 

case of the flat bottom canyon. Note that subsequent ray reflec- 

tions inside the canyon are now possible and, at ζ = 45 ◦, the sec- 

ond reflection must be further into the canyon. This is in contrast 

to the outward reflection of rays that characterizes the first regime. 

The magnitude of relative ray density per grid box is slightly en- 

hanced in this regime, compared to the first regime (this aligns 

with an increase in ray density observed in the ray tracing in Paper 

1). Once the ray density is increased sufficiently (and the Richard- 

son number is therefore reduced sufficiently), the wave breaks and 

overturning occurs, thereby leading to dissipation and mixing. The 

third regime occurs for ζ > 83 °, and this regime is characterized 

by a noticeable decrease in energy loss. While the ray tracing from 

Part 1 illustrates that these narrow canyons can lead to many ray 

reflections, there are few rays that are able to propagate into these 

canyons and so the ray density increase, and thus instability, de- 

creases sharply. 

We can gain further insight into the spatial patterns of dissi- 

pation and mixing by considering the Richardson number diag- 

nosed from the MITgcm simulations. Fig. 8 illustrates the mini- 

mum Richardson number over one tidal cycle, as well as the max- 

imum Froude number diagnosed from the ray tracing, along the 

center of a flat bottom canyon in the second regime of ζ -space, 

close to the maximum in relative energy loss. The tidally aver- 

aged dissipation is also included in Fig. 8 to show the agreement 

between the spatial pattern of turbulent dissipation and regions 

of instability taken from the Richardson and Froude number cal- 

culations. For both nondimensional numbers, shaded regions des- 

ignate regions where instabilities are possible. According to the 

Kelvin–Helmholtz criterion for instability, there are many regions 

in this case of flat bottom canyon which are potentially unstable. 

Specifically, the Richardson number calculation points to turbulent 

boundary layers emanating from the lip of the canyon towards the 

ocean interior. Fig. 8 has a region of instability up to 40 m high 

and 500 m laterally. This region emanating away from the canyon 

lip is a region of overturns due to an arrested lee wave, similar to 

to that seen in Klymak et al. (2013) . This type of instability can- 

not be predicted from the linear ray density metric. Furthermore, 

Fig. 9 presents instantaneous turbulent dissipation along the center 

of the canyon, taken at three instances during the same tidal cycle 

that the average is taken over. Tidal variation in dissipation along 

the center of the canyon is pronounced and extends much further 

away from the slope than that observed for a homogenous vertical 

wall. 

Fig. 9. Instantaneous turbulent dissipation along the center of a narrow ( ζ = 73 . 5 ◦) 

flat bottom canyon at three instances during one tidal cycle, each separated by ap- 

proximately a third of a tidal cycle: (top) 9.125 tidal cycles, (middle) 9.5 tidal cycles 

and (bottom) 9.875 tidal cycles. Instantaneous isopycnals are drawn in black. Note 

that the canyon mouth is located at x = 0 m. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 

Although there are some regions where mixing occurs which 

are not predicted from the ray tracing model, indicating non- 

linear processes are occurring, Fig. 8 illustrates that there is a 

generally good agreement between the spatial pattern of the min- 

imum Richardson number and the maximum Froude number from 

ray tracing. For instance, we observe that there is the potential 

for instability extending away from the canyon head along the sea 



24 R.H. Nazarian, S. Legg / Ocean Modelling 118 (2017) 16–30 

floor (between x = 0 m and x = 500 m) which has not been ob- 

served before for plain vertical walls. Instead, this instability is the 

result of wave reflection in the canyon region and the resulting 

convergence of rays along the center of the canyon. This region of 

instability also increases as ζ increases further into Regime 2. This 

relatively good match is an example of the utility of the ray trac- 

ing. Although it cannot capture the presence of the nonlinear lee 

wave, on the whole it matches the envelope of instability as diag- 

nosed from the Richardson number in the numerical simulations 

reasonably well. Despite its limitations, the ray tracing model may 

be a useful tool to understand and predict parameter regimes in 

which increased energy loss is possible. 

The transition to the third regime, which we estimate from 

the MITgcm parameter space sweep to be 83 °, is empirically de- 

termined. We now attempt to use the theory that we have de- 

veloped to explain this threshold. The physical argument that 

has been employed to describe the drop off in energy loss for 

very narrow canyons is that, while they are efficient dissipators, 

very little energy can enter through the narrow canyon mouth. 

We find the maximum vertically-summed increase in ray density, 

( 
∑ 

z (RD 1 /RD 0 ) max in the canyon region as a function of parame- 

ter ζ by running the ray tracing algorithm for each simulation (see 

Fig. 7 ). The maximum value of the wave focusing efficiency occurs 

at ζ = 73 . 3 ◦ in the ray tracing data. Not only is this close to the 

transition point seen in the MITgcm simulations, but furthermore, 

Fig. 7 closely resembles the behavior of the energy loss diagnos- 

tics as a function of ζ seen in Fig. 6 . This analytical approximation 

thus qualitatively captures the transition from the second to third 

regime, giving support to our theory for the physics leading to this 

transition, as well as confirming the utility of the ray tracing algo- 

rithm. 

While the majority of the attention has been given to the 

flat bottom canyon, the near-critical slope canyon case behaves 

similarly. The main distinction between the near-critical slope 

canyon and flat bottom canyon is that the sidewalls are not ver- 

tical in the case of the near-critical slope canyon, which allows a 

change/redistribution of wavenumber upon reflection, as outlined 

in Part 1. The main implication of this physics is that, in the first 

regime ( ζ < 30 °), the rays are still scattered out of the canyon 

upon reflection, but onto the shelf, leading to relatively little en- 

ergy loss in this regime. Given that the homogeneous critical slope 

is such an efficient dissipator of internal waves, it comes as no sur- 

prise that these relatively wide canyons are less efficient wave dis- 

sipators. Unlike the flat bottom canyon case, the transition between 

the first regime of outward scattering and the second regime of 

secondary reflections for critical slope canyons no longer occurs 

at ζ = 30 ◦ (i.e. the relative energy loss for the near-critical slope 

canyons around 30 ° are relatively constant). Instead, the transition 

point is shifted to ζ = 45 . 3 ◦ (as shown in Part 1). The offset be- 

tween this regime-two transition point and that of the flat bottom 

canyon is a result of the difference in sidewall steepness. While the 

point of transition is shifted, the second regime still has the same 

underlying physics; rays are now reflected back into the canyon 

region where they can further reflect and scatter. As the number 

of reflections increases, so too does the likelihood of increasing 

vertical wavenumber and breaking. Note however that there is de- 

crease in the relative energy loss centered around 80 ° that is not 

observed for the flat bottom canyons. This is due to the fact that 

the ray density in the near-critical slope canyons decreases earlier 

as a function of ζ . 

Finally, the third regime occurs at the same threshold as for 

the flat bottom canyon ( ζ = 83 ◦, again empirically defined), but 

now the energy loss has a modest increase with increasing ζ . Al- 

though the ray density decreases rapidly, the increase in vertical 

wavenumber increases to a greater extent around this threshold 

from Regime 2 to 3, thus leading to a slight uptick in relative en- 

ergy losses. We repeat the approach of taking the maximum ver- 

tically summed increase in ray density for the near-critical slope 

canyon (seen in Fig. 7 ), however the agreement with the MITgcm 

relative energy loss ( Fig. 6 ) is not as good for the case of the flat 

bottom canyon. This confirms our understanding that it is not only 

the change in ray and energy density in the near-critical slope 

canyons that leads to instability, but additionally the increase in 

vertical wavenumber, which has a stronger effect for larger values 

of ζ (see Part 1). 

We show the minimum Richardson number over one tidal cy- 

cle along the center of a Regime Two near-critical slope canyon in 

Fig. 10 . Like a plain near-critical uniform slope, we notice a broad 

region of shear instability along the slope with pockets of convec- 

tive instability. As has been shown in the literature, this is due to 

a near-critical reflection and the subsequent high density of rays 

and energy along the slope ( Ivey and Nokes, 1989 ). Fig. 10 differs 

from a plane near-critical slope in that regions of potential insta- 

bility extend away from the slope (i.e. x < 0). As in the case of 

the flat bottom canyon, we attribute this instability away from the 

canyon as a direct result of ray scattering and focusing within the 

canyon region, which increases the ray density along the center of 

the canyon. We again calculate the maximum Froude number from 

the ray tracing algorithm, seen in the bottom panel of Fig. 10 . Thus, 

from taking the Froude and Richardson numbers in tandem, we see 

that the energy loss in the canyon region is the cumulative result 

of increased vertical wave number, as well as increased ray density. 

Again, note the agreement between the linear theory (ray tracing) 

and the numerical simulation. 

In addition to a match between the regions of instability di- 

agnosed from the nondimensional numbers, Fr and Ri , the spatial 

patterns of instability match the spatial patterns of tidally averaged 

turbulent dissipation calculated from the MITgcm ( Fig. 10 ). This 

suggests that these nondimensional numbers are useful in under- 

standing the energy loss within the canyon and serves as another 

demonstration that the internal wave scattering dynamics within 

canyons can be understood and predicted through the ray tracing 

algorithm that we have developed. Furthermore, Fig. 11 presents 

instantaneous turbulent dissipation along the center of the canyon, 

taken at three instances during the same tidal cycle that the aver- 

age is taken over. Tidal variation in dissipation along the center of 

the canyon is pronounced. We attribute this variation to a nonlin- 

ear bolus sloshing up the canyon. Note, however, that for all three 

snapshots in Fig. 11 , the envelope of dissipation extends much fur- 

ther away from the slope than that observed for a homogenous 

critical slope. 

So far, all calculations of energy loss, both E 1 and E 2 , have been 

considered relative to the total energy flux entering the canyon re- 

gion. To adequately determine whether canyons are more efficient 

at dissipating internal wave energy than their sloping counterpart, 

we normalize both E 1 and E 2 by the energy loss over a control 

topography of the same width (specifically, E 1 for the canyon is 

normalized by E 1 for the control and likewise E 2 for the canyon 

is normalized by E 2 for the control). Thus, we normalize all of the 

near-critical slope canyon calculations of energy loss by the energy 

loss over a near-critical slope (i.e. the same slope as the canyon 

thalweg) of the same width and height. Similarly, we normalize all 

flat bottom canyon energy loss calculations by the energy loss oc- 

curring over a vertical wall of the same width and height. Although 

vertical walls are not efficient dissipators of internal wave energy, 

we construct this control to tease out the effect of wave focusing 

by the canyon. Results are shown in Fig. 12 . 

There are two main results that can be drawn from Fig. 12 . 

First, note that the ratio of the energy loss in the near-critical 

slope canyon relative to the energy lost over a planar near-critical 

slope is less than or approximately unity throughout the ζ pa- 

rameter space. For smaller values of ζ , this ratio is significantly 
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Fig. 10. (Top) Minimum Richardson number for one tidal cycle and (middle) tidally 

averaged dissipation in the low-resolution, hydrostatic MITgcm simulation and (bot- 

tom) maximum Froude number from the ray tracing algorithm, taken along the 

center of a near-critical slope canyon in the second regime. (Top) By the Miles–

Howard criterion, all cyan regions can experience shear instability while navy re- 

gions additionally can experience convective instability. (Middle) There is generally 

good agreement between the regions of enhanced dissipation and Richardson num- 

ber. Isopycnals (black lines) are drawn for reference and taken as a snapshot at 

T = 10 tidal cycles. (Bottom) Regions in which the Froude number is larger than 

unity are regions where instability can develop. Note that the canyon mouth is lo- 

cated at x = 0 m. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 11. Instantaneous turbulent dissipation along the center of a narrow ( ζ = 

73 . 5 ◦) near-critical slope canyon at three instances during one tidal cycle, each sep- 

arated by approximately a third of a tidal cycle: (top) 9.125 tidal cycles, (middle) 9.5 

tidal cycles and (bottom) 9.875 tidal cycles. Instantaneous isopycnals are drawn in 

black. Note that the canyon mouth is located at x = 0 m. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 

less than one and, as ζ increases, moves toward unity. This be- 

havior can again be explained using the three physical regimes 

we defined to explain Fig. 6 . Specifically, for small ζ values, the 

canyon dissipates a small amount of energy since rays reflect out 

of the canyon, while the planar near-critical slope is a very efficient 

dissipator of energy. The near-critical slope canyon only achieves 

a near-critical slope along its thalweg, so the wave has less op- 

portunity to undergo a near-critical reflection, and the associated 
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Fig. 12. Ratio of internal wave energy lost in canyon region normalized by the con- 

trol. For the near-critical slope canyons, the control is a near-critical slope, while 

for the flat bottom canyons, the control is a vertical wall. Any values greater than 

unity (indicated with the dashed line) indicate a parameter configuration yielding 

more energy loss in the canyon than in the corresponding control. (For interpreta- 

tion of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

enhanced mixing. As ζ increases, and the second regime is real- 

ized, the energy loss in the canyon and energy loss over the planar 

near-critical slope become more comparable due to wave trapping 

and the moderate increase in vertical wave number. Relative en- 

ergy loss remains comparable for the third regime, although these 

canyons are so narrow that the total energy entering the canyon 

is small. It is important to note that, regardless of the value of ζ , 

near-critical slope canyons do not constitute a large increase in en- 

ergy loss compared to a uniform near-critical continental slope. 

The second main result that emerges from Fig. 12 regards the 

flat bottom canyon. Specifically, for all values of ζ , and thus ev- 

ery regime, the flat bottom canyon dissipates more energy than its 

analogous vertical wall control. This is mainly a result of the diag- 

nostic we are calculating. Specifically, the vertical wall mainly acts 

to reflect the wave and only dissipates a small fraction of its en- 

ergy. Thus, since we divide by a small control, the relative energy 

loss due to the flat bottom canyon appears strikingly large. Note, 

however, that the overall fraction of energy loss for the flat bottom 

canyon seen in Fig. 12 has the same ζ dependence as seen for the 

flat bottom canyon in Fig. 6 , which shows the fraction of incoming 

energy lost due to the presence of the canyon. Thus, for sections 

of the continental slope which are steep, the presence of flat bot- 

tom canyons poses an opportunity, by up to a factor of eight, to 

increase energy loss from the wave and the likelihood of diapyc- 

nal mixing. This is in good agreement with the ray tracing algo- 

rithm, which predicts a factor of eight increase in ray density for 

relatively narrow flat bottom canyons ( Fig. 7 ), again illustrating the 

utility of the ray tracing algorithm. This contrasts with the near- 

critical slope canyon where there is not necessarily more energy 

loss in the canyon than in the control. This is hinted at in Fig. 6 , 

where both control simulations, the near-critical slope and vertical 

wall, are plotted at ζ = 0 ◦. 

4.1. Resolution dependence 

All of the results presented thus far concern the low resolution 

simulations. We test the resolution dependence of the results by 

repeating certain canyon geometries in a non-hydrostatic, high res- 

Fig. 13. Same as Fig. 6 , now including the high-resolution, low-amplitude simula- 

tions and the low-resolution, low-amplitude simulations. Note that L.R. denotes low 

resolution, H.R. denotes high resolution and L.A. denotes low amplitude. (For inter- 

pretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 

olution configuration. Results are shown in Fig. 13 . There is a small, 

albeit distinguishable, difference between the low-resolution, hy- 

drostatic simulations and the high-resolution, non-hydrostatic sim- 

ulations for large ζ . We believe that the high resolution, non- 

hydrostatic simulations are resolving some of the smaller scale 

mixing and overturning properties better than the low resolution 

simulations, such that higher energy dissipation may be achieved. 

It is important to stress that, since we are conducting a parameter 

sweep, we are primarily interested in the behavior in ζ and be- 

tween the two canyon thalweg slopes ( αt ), under which we find 

consistent behavior in both parameters between the low and high 

resolution suites of simulations. 

Additionally, as mentioned in Section 3 , the high resolution 

simulations are conducted with a lower forcing amplitude to sat- 

isfy the CFL criterion. Although the metrics for energy loss have 

a nonlinear dependence on the velocity amplitude, we expect this 

amplitude-dependence to be modest when dividing by the incom- 

ing flux or control, respectively, since these are also taken at the 

same lower amplitude. Both forcing amplitudes, and thus both in- 

coming Froude numbers, are also the same order of magnitude (0.3 

and 0.2 for low and high resolution simulations, respectively) and 

thus both are safely within the same regime of initial flow sta- 

bility. To verify this hypothesis, we ran the low-resolution, hydro- 

static simulations at the same reduced forcing amplitude as the 

high resolution simulation. Results are shown in Fig. 13 . Note that 

the change in forcing velocity may account for some of the differ- 

ence between the low- and high-resolution simulations but, as we 

conjectured, the result is small as all values are normalized by the 

control with the same forcing frequency. The same pattern, of rel- 

atively little change, is observed when normalizing the energy loss 

in the canyon relative to the incoming tidal energy. 

Finally, for the low resolution, hydrostatic simulations only a 

few grid cells comprise the canyon in the along-slope direction, 

which may introduce numerical errors. The small width for very 

large values of ζ is necessitated by the requirement that the length 

of the canyon be held fixed for all experiments. However, for large 

ζ , the high resolution, non-hydrostatic simulations mirror the en- 

ergy loss patterns of the low resolution, hydrostatic simulations in 

Fig. 13 giving some confidence in these results despite their coarse 

resolution. 
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Fig. 14. Percentage of the volume-integrated turbulent dissipation diagnosed that 

occurs in regions of elevated Froude number as predicted by the ray tracing algo- 

rithm. Unfilled markers denote the comparison taken over the entire canyon; filled 

markers denote the comparison taken along the canyon center(i.e. a cross-section 

in the x - z plane). This comparison is conducted for four different Froude number 

thresholds: 0.55, 0.70, 0.85 and the canonical value of 1. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 

4.2. Ray tracing robustness 

We have seen in both Figs. 8 and 10 that there is a relatively 

good qualitative agreement between the spatial extent of instabil- 

ity predicted by the ray tracing algorithm and the spatial extent 

of instability diagnosed from the Richardson number and turbulent 

dissipation in the MITgcm. In all of the ray tracing figures, we have 

used the canonical threshold of F r = 1 to determine where insta- 

bility is possible. We now conduct a more quantitative test of the 

robustness of the ray tracing algorithm for this threshold of F r = 1 , 

as well as for lower Froude number thresholds. 

In order to gain a more quantitative understanding of the de- 

gree to which the region of potential instability predicted by the 

Froude number matches the region of turbulent mixing in the 

model, we consider the volume-integrated turbulent dissipation di- 

agnosed from the MITgcm. Specifically, we take the ratio of the 

volume-integrated dissipation in the grid boxes where the Froude 

number predicts instability and the volume-integrated dissipation 

over the entire canyon. Results are plotted in Fig. 14 , and denoted 

by the unfilled markers. For the canonical Froude number thresh- 

old of unity, plotted on the right of Fig. 14 , the linear ray tracing 

captures about 5–15% of the dissipation, depending on the canyon 

thalweg slope and the canyon aspect ratio ( ζ ). Overall, the ray 

tracing algorithm better captures the instability for the flat bottom 

canyons than the near-critical slope canyons. We additionally con- 

sider just the canyon center (i.e. a cross-section along the canyon 

center in the x - z plane), which is plotted in Fig. 14 in the form 

of filled markers. The ray tracing does a significantly better job in 

capturing the instability along the canyon center than over the en- 

tire canyon. This is unsurprising, given the relatively good agree- 

ment in the spatial maps of instability presented in Figs. 8 and 10 . 

We repeat this test three more times, each with a successively 

lower Froude number threshold, and present the results in Fig. 14 . 

As the Froude number threshold is lowered, the ray tracing algo- 

rithm’s region of instability more closely matches the MITgcm and 

thus encompasses more of the turbulent dissipation. For the low- 

est threshold, Fr ≥ 0.55, the ray tracing algorithm captures approx- 

imately 30–55% of the dissipation for the flat bottom canyons, and 

approximately 15–42% of the dissipation for the near-critical slope 

canyons. The increase in instability captured by the ray tracing for 

lower Froude number thresholds is present when considering both 

the entire canyon, as well as slices taken down the center of the 

canyon. 

As mentioned briefly in Part 1, there are regions of instability 

that the ray tracing algorithm can never predict, and thus we can 

never attain 100% of the model’s dissipation in Fig. 14 . There are 

regions of strongly nonlinear processes, namely bores and arrested 

lee waves, which can never be encapsulated in a linear context. 

Additionally, we can not predict regions of constructive and de- 

structive interference from the ray tracing algorithm. Given the fo- 

cusing effects of canyons, constructive interference, and the subse- 

quent wave steepening and breaking, could account for part of the 

dissipation mismatch between the ray tracing and MITgcm. Despite 

these limitations, particularly in not being able to diagnose con- 

structive and destructive interference, the ray tracing model has 

still been shown to be a useful tool to understand and predict pa- 

rameter regimes in which increased energy loss is possible (partic- 

ularly in the context of Fig. 7 ). 

It is also imperative to note that the Froude number threshold 

of 1 for instability is a threshold for supercritical flow, and mix- 

ing is still possible for a Froude number less than 1. As we have 

shown here, a Froude number as low as 0.55 can be an appropriate 

threshold for instability in that most of the region of turbulent dis- 

sipation in the numerical model is captured in the ray tracing al- 

gorithm. It has been noted in the literature that mixing is possible 

for Froude number smaller than unity or conversely, for Richardson 

number larger than 0.25 ( Galperin et al., 2007 ). Thus, our thresh- 

old of unity may be too stringent for instability to occur. Perhaps 

a more moderate value of F r = 0 . 75 , safely in the range presented 

in Fig. 14 , may be a more appropriate threshold for instability. This 

corresponds to a Richardson number of approximately 0.44 which 

is within the bounds of where instability has been observed to oc- 

cur ( Galperin et al., 2007 ). 

5. Discussion 

Observational studies over the past two decades have shown 

that canyons are efficient dissipators of internal tides ( Bosley et al., 

2004; Bruno et al., 2006; Gardner, 1989; Gordon and Marshall, 

1976; Gregg et al., 2011; Hall and Carter, 2011; Hotchkiss and Wun- 

sch, 1982; Lee et al., 2009a, b; Vlasenko et al., 2016; Waterhouse 

et al., 2013; Xu and Noble, 2009 ). We have conducted an ideal- 

ized parameter space sweep to understand the processes leading 

to this energy loss and quantify this energy loss relative to the en- 

ergy lost over a comparable planar section of continental slope. For 

the case of the flat bottom canyon, both an increase in ray and en- 

ergy density via topographic focusing, as well as a nonlinear ar- 

rested lee wave over the V-shaped canyon lip, are responsible for 

enhanced energy loss. In the near-critical slope canyon, an increase 

in ray density can similarly lead to increased energy dissipation, as 

can an increase in vertical wavenumber. We find that for a con- 

tinental slope consisting of vertical walls, the insertion of a flat 

bottom canyon always increases the energy lost from incoming in- 

ternal tides, whereas near-critical slope canyons largely decrease 

the energy loss at the slope relative to a planar near-critical slope. 

We confirm the observational studies that canyons can be poten- 

tial sinks of internal wave energy. To conduct the study we have 

used a ray tracing algorithm and numerical model in tandem, with 

the numerical model illustrating the robustness of the linear the- 

ory in understanding the fundamentals of internal wave scattering 

in canyons. 

We have shown that energy flux divergence, dissipation, the 

Froude number and Richardson number can be used to quan- 

tify the effects of canyons; however there are differences between 

these different diagnostic quantities. In Figs. 6 and 12 , the two di- 
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Fig. 15. Vertically integrated energy flux for the case of a flat bottom canyon with 

ζ = 82 . 1 ◦ (high resolution, non-hydrostatic resolution). The energy flux calculated 

over the entire nine tidal cycles (i.e. after steady state reached) and tidally-averaged, 

as done for all divergence of the energy flux and dissipation calculations. The vec- 

tors have all been normalized by the maximum value so as to show the relative 

energy flux throughout the canyon domain. Dashed lines indicate the y -boundaries 

for the canyon energy flux divergence and dissipation calculations. (For interpreta- 

tion of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

agnostics of the divergence of the energy flux and explicit energy 

dissipation, E 1 and E 2 , respectively, are in broad agreement on the 

overall behavior of energy loss within the canyon regions as ζ in- 

creases. It is clear however, in Fig. 6 that E 1 is consistently larger 

than E 2 . This difference in metrics is due to the fact that we do 

not diagnose the numerical dissipation and energy input to mix- 

ing, which can add to this difference in diagnostics (i.e. the resid- 

ual term in our energy budget, (7) ). The difference in diagnostics 

is also most pronounced for large values of ζ where we expect 

that nonlinear processes, encapsulated in the residual term, will 

be more prevalent. 

Additionally, Fig. 6 suggests that some flat bottom canyons at 

high ζ can dissipate more internal wave energy than impinges on 

the canyon region from the west. The cause of this behavior is re- 

vealed by examination of the energy flux (presented in Fig. 15 ): 

the flux into the canyon through the y -boundaries for large ζ is 

positive, due to the scattering and refractive effects of the canyon. 

Specifically waves are refracted around the canyon mouth and en- 

ter the canyon through the side boundaries, giving rise to this large 

inward flux. In the control simulation with flat bathymetry, there 

is no net flux in the y -direction. 

The classes of canyons studied here are very idealized and were 

constructed to span the parameter space, yet provide insight rele- 

vant to real ocean canyons. In addition to obtaining a first order 

understanding of processes contributing to internal wave breaking 

in submarine canyons, many canyons, irrespective of location, are 

short and steep, similar to some hybrid of our two classes ( Harris 

and Whiteway, 2011 ). Additionally, numerous studies have shown 

that regions of the continental slope are near-critical to supercrit- 

ical, most noticeably the recent TTIDE study, in which most of the 

incoming internal tides were reflected back toward the open ocean 

( Johnston, Rudnick and Kelly, 2015 ). Thus, our construction of the 

relative energy loss due to canyons, relative to some continental 

slope, is relevant. The true energy loss enhancement by continental 

slope canyons may lie somewhere between that of the flat bottom 

and near-critical slope canyons in Fig. 12 given that the average 

maximum continental slope across most of the continental slope is 

between critical and pure vertical (and may be two to eight times 

that lost on a planar supercritical continental slope). 

Another idealization is the generation of the internal wave 

normal to the topography. While this is a departure from real- 

ity, it allows us to obtain symmetric dissipation on both sides of 

the canyon and gain intuition into the focusing efficiency of the 

canyons as a function of the canyon aspect ratio. This simplification 

does not, however, alter the underlying physics of the problem. As 

this scenario is not our focus here, we leave this as another poten- 

tial application of the ray tracing algorithm. 

In addition to the chosen canyon topography, further sim- 

plicities were made in ignoring the effects of rotation. A main 

consideration in ignoring the effects of rotation is the Rossby num- 

ber, or the ratio of the advective to rotational terms in the momen- 

tum equation (formulated in Part 1), calculated as 

Ro = 

U 

f L 
(11) 

where U is a velocity scale, f is the Coriolis parameter and L is a 

length scale. When Ro < 1, the effects of rotation should be con- 

sidered while rotation can be ignored for cases when Ro > 1. For 

our case, the forcing velocity, U , is 2 cm/s, the basin length scale, 

L , is approximately 1 km and a low-latitude Coriolis frequency, f , is 

of order 10 −5 . This yields a Rossby number of 2, so rotation is not 

important. Additionally, the omission of rotation made it easier to 

identify a relationship between the spatial structure of energy loss, 

as it has been shown that rotation may lead to asymmetries in the 

location of dissipation within canyons ( Zhang et al., 2014 ). Other 

work has shown that rotation may be an important contributor to 

canyon upwelling dynamics ( Waterhouse et al., 2009 ) and resonant 

amplification ( Swart et al., 2011 ), although these studies were con- 

ducted for canyon lengths much larger than those presented here, 

and hence by (11) , of small Rossby number and thus more affected 

by rotation. 

Additionally, we made the assumption of constant stratification 

in our ray tracing and numerical model setup. Our goal here, how- 

ever, is not to simulate a real canyon in every aspect but to get 

a broader understanding of the processes occurring in canyons. 

Specifically, the constant stratification assumption translates to a 

constant angle of inclination for the group velocity vectors in the 

ray racing algorithm. This simplification made the output of the ray 

tracing scheme significantly easier to understand and use as a tool 

for interpreting the MITgcm results to probe the underling physics. 

6. Conclusion 

There have been extensive numerical modeling studies regard- 

ing internal tide energy loss at a variety of topographic features, 

yet submarine canyons, specifically canyons on the continental 

slope, have not received sufficient attention. As a first attempt to 

study the underlying physical processes and understand the to- 

pographic control on the ability of these canyons to induce mix- 

ing, we have conducted a parameter space study for idealized V- 

shaped canyons. The two topographic parameters that we have in- 

vestigated are the thalweg steepness, related to angle αt , which 

included two cases: near-critical and pure vertical walls, as well 

as the ratio of canyon width to canyon length, related to angle 

ζ , which we allowed to vary between 0 ° and 90 °. Both energy 

loss diagnostics, the divergence of the energy flux and the dissi- 

pation, yield the same behavior for the parameter space; that is, 

as ζ increases, the percentage of incoming energy that is lost due 

to the canyon remains approximately constant and then, around 

ζ = 30 ◦, for vertical side walls, begins to increase and peaks just 

before ζ = 83 ◦, at which point it decreases. This behavior in ζ has 

some α-dependence as the near-critical slope canyons exhibits a 

small dip in energy loss centered around the same transition point 
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of ζ = 83 ◦ before increases slightly for the narrowest canyons. Pa- 

rameter α is also of equal importance to ζ when comparing the 

energy lost in the canyon to some plane continental slope. 

To explain these three distinct regimes and their associated 

physics, we use our ray tracing algorithm (described in Part 1), as 

well as calculate the Richardson number from the MITgcm simula- 

tions. For the first regime ( ζ < 30 ° for flat bottom canyons and 

ζ < 45.8 ° for near-critical slope canyons), energy loss remained 

roughly constant with ζ as less wave energy is able to propagate 

into the canyon region as it becomes narrower. Energy loss in- 

creases steeply with ζ in the second regime, as secondary wave re- 

flections within the canyon are possible. For the near-critical slope 

canyon case, this means that there are more opportunities to in- 

crease the vertical wavenumber, thereby leading to instability. The 

near-critical slope canyon has a small dip in energy loss in Regime 

2 around ζ = 80 ◦ as the ray density increase becomes less of a fac- 

tor in energy loss and the relative importance of increases in verti- 

cal wave number rises. Both the flat bottom and near-critical slope 

cases also achieve an increase in Froude number in this regime 

through an increase in wave density within the canyon region. The 

significant increase in energy loss with ζ that characterizes Regime 

Two is sharply halted for the flat bottom canyons around ζ = 83 ◦, 
at which point energy loss falls off as ζ approaches 90 °. For the 

near-critical slope canyons, there is still a slight uptick in energy 

loss as ζ approaches 90 ° owing to further increase in vertical wave 

number. In this third regime, although the wave can undergo many 

reflections, the canyon has become so narrow that relatively little 

wave energy can make it into the canyon region. It should also 

be noted that, for all regimes, the flat bottom canyons achieve en- 

ergy loss due to a breaking lee wave mechanism at the steep wall 

edge enhanced by the increased ray density ( Klymak et al., 2013 ). 

Thus, the three primary mechanisms for instability and mixing (in- 

creased ray and thus energy density, increased vertical wave num- 

ber and the presence of lee waves) all combine in different regimes 

to lead to significant energy loss. Such canyons can dissipate up 

to nearly 100% of the incoming internal tide energy and can be 

more efficient pathways for dissipation, especially in the second ζ
regime, than the surrounding continental slope. 

In comparing the spatial extent of instability, and thus poten- 

tial extent for mixing, we have shown that the agreement between 

the extent of wave-breaking in the linear ray tracing algorithm (di- 

agnosed from the Froude number) and the numerical model (di- 

agnosed from both the Richardson number and turbulent dissipa- 

tion) is variable based on the canyon geometry and the threshold 

for instability. The ray tracing can indicate where energy density 

increases, and how the vertical wavenumber changes. The full nu- 

merical simulations, however, include nonlinear processes, such as 

wave breaking, dissipation and mixing, as well as allowing for con- 

structive and destructive interference. Hence the ray tracing can 

provide qualitative guidance as to the dependence of focusing on 

the canyon aspect ratio (see Fig. 7 ) and aid in the interpretation of 

the numerical simulations, but the numerical simulations are nec- 

essary to quantitatively determine the dissipation and its spatial 

distribution. This is the first time that ray tracing has been used 

to calculate quantities such as the vertical wavenumber, ray den- 

sity and, subsequently, the Froude number. Given that there is a 

reasonable qualitative agreement with the models, the ray tracing 

may be used as a precursor to a GCM or observational campaign, 

to identify whether instabilities occur for given topography and 

where those instabilities occur. The ray tracing algorithm does not 

require significant computational power or time and may thus be 

a powerful tool in considering whether GCM-scale simulations or 

field programs should be conducted, as well as the scope of such 

simulations or observations. 

Although this is an idealized study, it is an important first step 

toward characterizing the dissipative effects of continental slope 

canyons. The validity of these results can be tested in realistic con- 

tinental slope canyons. If validated, this additional mixing could 

have important implications for ocean stratification and circulation. 

The spatial distribution of diapycnal mixing may be altered when 

the elevated levels of dissipation within continental slope canyons 

are accounted for and may only be accurately captured when we 

include all potential sinks of internal tidal energy in GCMs ( Melet 

et al., 2016 ). 
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