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When internal waves interact with topography, such as continental slopes, they can transfer wave en-
ergy to local dissipation and diapycnal mixing. Submarine canyons comprise approximately ten percent
of global continental slopes, and can enhance the local dissipation of internal wave energy, yet param-
eterizations of canyon mixing processes are currently missing from large-scale ocean models. As a first
step in the development of such parameterizations, we conduct a parameter space study of M2 tidal-

Keywords: frequency, low-mode internal waves interacting with idealized V-shaped canyon topographies. Specifi-

Internal waves cally, we examine the effects of varying the canyon mouth width, shape and slope of the thalweg (line

Canyons of lowest elevation). This effort is divided into two parts. In the first part, presented here, we extend the

RMixi?g . theory of 3-dimensional internal wave reflection to a rotated coordinate system aligned with our ideal-
ay tracing

ized V-shaped canyons. Based on the updated linear internal wave reflection solution that we derive, we
construct a ray tracing algorithm which traces a large number of rays (the discrete analog of a continu-
ous wave) into the canyon region where they can scatter off topography. Although a ray tracing approach
has been employed in other studies, we have, for the first time, used ray tracing to calculate changes
in wavenumber and ray density which, in turn, can be used to calculate the Froude number (a measure
of the likelihood of instability). We show that for canyons of intermediate aspect ratio, large spatial en-
velopes of instability can form in the presence of supercritical sidewalls. Additionally, the canyon height
and length can modulate the Froude number. The second part of this study, a diagnosis of internal wave
scattering in continental slope canyons using both numerical simulations and this ray tracing algorithm,
as well as a test of robustness of the ray tracing, is presented in the companion article.

© 2017 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction energy density. They can then become unstable (due to shear in-

stability, convective instability or some combination thereof), break

Internal waves are efficient transmitters of energy across ocean
basins. These waves, either generated by the winds or tidal
flows over rough topography (Munk and Wunsch, 1998) propagate
through the ocean basins until they are forced to break by topo-
graphic features, or non-linear wave-wave interactions (MacKinnon
etal., 2013). To first approximation, 30-60% of the initial wave en-
ergy makes it away from the generation site and previous stud-
ies have shown that a sizable portion of this energy can make it
to the edge of the basins where the continental slope is encoun-
tered (St. Laurent and Nash, 2004; Klymak etal., 2006; Alford et al.,
2011; Waterhouse etal., 2014). At these continental slopes, internal
waves are scattered, leading to higher wavenumbers and/or greater
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and lead to diapycnal mixing. Diapycnal mixing due to internal tide
breaking, both near the generation site and in the farfield, is an
important component of the global meridional overturning circu-
lation (Ilicak and Vallis, 2012; Talley, 2013).

Over the past two decades, there have been numerous stud-
ies aimed at understanding the parameter space for which internal
waves break over a host of farfield topographies, as well as at the
generation site itself (Legg and Klymak, 2008; Nikurashin and Legg,
2011; Johnston etal., 2011). Plane slopes (Cacchione and Wun-
sch, 1974; Ivey and Nokes, 1989; Hallock and Field, 2005; Nash
etal., 2007; Kunze etal., 2012; Hall etal., 2013), convex and con-
cave slopes (Legg and Adcroft, 2003), ridges and mounts (Johnston
and Merrifield, 2003; Klymak etal., 2013), channels (Drijfhout and
Maas, 2007) and isolated/random topographic features (Egbert and

1463-5003/© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Ray, 2000; Buehler and Holmes-Cerfon, 2011; Legg, 2014) have
been studied from both observational and modeling perspectives.

Despite their potential to be a sink of internal tidal energy,
continental slope canyons have been largely overlooked by the
modeling community. As Kunze etal. (2002) suggested, submarine
canyons may indeed be significant sinks of internal wave energy
due to both their frequency along the continental slope and their
geometries. Given that about 10% of the continental slope is carved
out by such canyons, and that the geometry of the canyons may
be conducive to wave focusing, Carter and Gregg (2002) argued
from their observations of Monterey Canyon that the internal wave
energy dissipation and subsequent mixing is non-negligible (ap-
proximately the same order of magnitude as the mixing currently
parameterized in ocean general circulation models) and warrants
study in more depth. This conclusion is in agreement with other
observational studies of internal wave-driven mixing in continen-
tal slope canyons (Gordon and Marshall, 1976; Hotchkiss and Wun-
sch, 1982; Gardner, 1989; Petruncio etal., 1998; Codiga etal., 1999;
Bosley etal., 2004; Bruno etal., 2006; Lee etal., 2009a; 2009b; Xu
and Noble, 2009; Gregg etal., 2011; Hall and Carter, 2011; Water-
house etal., 2013; Vlasenko etal., 2016).

While our study is motivated by observations of mixing in ac-
tual continental slope canyons, we begin with idealized V-shaped
canyons in order to tease out the fundamental dynamics (we fur-
ther justify this choice of topography in Section4). We develop and
employ a ray tracing algorithm to explore the impact of canyon ge-
ometry on ray focusing and wave number within a linear context.
While ray tracing algorithms have been used to understand inter-
nal wave dynamics before (Manders and Maas, 2004; Maas, 2005;
Drijfhout and Maas, 2007; Rabitti and Maas, 2013; 2014), for the
first time, we use reflection information to calculate the Froude
number (formally defined in Section3) and hence estimate the
likelihood for instability. Thus, without the use of a fully-nonlinear
general circulation model (GCM), we aim to predict, using our lin-
ear ray tracing algorithm, where regions of instability may occur
for wave scattering off idealized, V-shaped canyon topography.

The idealized canyons we have chosen to analyze are oversim-
plifications of real canyon bathymetry; however canyons tend to
follow a roughly V-shaped profile (Shepard, 1981) and our focus
here is not to capture every detail of particular wave-topography
interaction, but to explore the parameter space (Carter and Gregg
2002). Specifically, we do a suite of experiments to vary the geo-
metric parameters of the ratio of canyon mouth opening to canyon
length, as well as the shape/thalweg (line of lowest elevation)
slope, to understand the wave reflection behavior and resulting
instability. These are two important geometric parameters which
vary between observed continental slope canyons, and thus a good
starting point for our study (Gregg etal., 2011; Hall and Carter,
2011). As a further simplification, we only consider remotely-
generated M2 tidal-frequency, mode-one internal waves, a reason-
able assumption as a sizable fraction of the internal wave energy
is observed to be at the M2 tidal-frequency (Munk and Wunsch,
1998).

The goal of Part 1 of this study is to extend the internal wave
reflection theory to 3D, rotated topography and to use this theory
to construct a ray tracing algorithm. Our objective in designing this
ray tracing is to follow a large number of rays through the canyon
region as they reflect off the topography, and store information on
the trajectory of these rays. This stored information then allows us
o (i) predict regions where instability is energetically possible and
(ii) understand the processes that cause these regions to experi-
ence instability. In Part 2, through a comparison with numerical
simulations, we also seek to test the robustness of this ray trac-
ing derived from the linear theory. This ray tracing will then be
used in tandem with a fully nonlinear GCM to understand the to-

pographic control on wave breaking and subsequent energy loss
(Nazarian and Legg, 2017).

In this paper, we build upon existing internal wave reflection
theory and use this theory as the backbone of our ray tracing algo-
rithm to understand internal wave scattering in continental slope
canyons. In Section2, we present the physical theory of 3D wave
reflection. Based on this theory, we develop the methodology used
in the linear ray tracing algorithm in Section3 and present exam-
ples of the ray tracing for various idealized topographies. This ray
tracing code may be applied to internal wave scattering off any ar-
bitrary topography, as the algorithm depends only on the local to-
pographic parameters. We then present the idealized canyons, and
the justification for such canyons, in Section4. In Section5 we an-
alyze the results of the ray tracing algorithm for two classes of
idealized continental slope canyons to obtain a first-order under-
standing of internal wave dynamics in continental slope canyons.
We find that the linear ray tracing algorithm predicts large en-
velopes of both increased ray density and, for canyons with non-
vertical sidewalls, an increase in vertical wave number, both of
which can contribute to the formation of instabilities. We also find
that this region of instability due to topographic focusing is mod-
ified by the spatial extent of the canyon, including the canyon
height and relative canyon length. In Part 2 of this study we will
add to this understanding by complimenting the ray tracing with a
fully-nonlinear GCM, as well as using the GCM to test the robust-
ness of the ray tracing algorithm (Nazarian and Legg, 2017).

2. Theory

When low mode internal waves are scattered by topography,
energy can be effectively transferred to higher vertical wavenum-
bers, which leads to a higher Froude number. This nondimensional
number, Fr, quantifies the stability of the flow and the likelihood of
transitioning into the turbulent flow regime. We thus develop the
3D internal wave scattering theory applied to a rotated coordinate
system to calculate the wavenumber as a function of the geometry
of the topography by which it is scattered, as well as the original
wave properties. The original theory of internal wave reflection off
topography was set forth by Phillips (1963; 1966) and considered
further by Eriksen (1982). We adapt the setup of Eriksen (hereafter
E82) to a rotated coordinate system to construct the two symmet-
ric sides of the V-shaped canyon.

We start by considering a plane slope, inclined at an angle, «,
relative to the horizontal. We then rotate the plane by another an-
gle, ¢, relative to the y-axis. These angles are displayed in Fig.1
and the resulting inclined, rotated plane comprises one sidewall of
our V-shaped canyon.

Similar to E82, we consider a semi-infinite domain with x de-
noting the onshore direction, y denoting the alongshore direction
and z denoting the vertical (as seen in Fig.1). We start with the
linearized, inviscid, non-rotating Boussinesq equations and assume
that nondivergence is satisfied. Our guiding equations can thus be
written as:

w1y
ot Po 0x

v 19p

ot~ po dy

NZW/+ 82W _ l82p/ (1)

2~ pg 0tdz
o o ow "
ax T ay t oz T

where the prime notation denotes the wave perturbation fields. u,
v and w are the velocity components in x, y and z, respectively, and
p is the pressure. N2 is the background density stratification, which
is defined as N2 = —pi%— where pg is the background density.
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Fig. 1. Schematic of the wave reflection from sloping topography at an angle « to the horizontal, and rotated at an angle ¢ from the y-axis. Bold arrows indicate the wave
group velocity vectors. (k, |, m) are the wave vector components, and [ subscripts denote the incident wave while R subscripts denote the reflected wave. The incident wave
group velocity vector is at an angle 6, to the horizontal, and an angle ¢, to the normal of the topographic plane. Based on the theory and schematic set forth in E82.

The system of four equations in four unknowns can be combined
to derive an equation for the vertical velocity w’:

92 ( 02 02 02 5 02 92
w(w*W*aﬁ)W’” (8><2+3}/2>W/:0 @
Assuming a plane wave, decomposed into its incident and re-

flected components (indicated by I and R subscripts, respectively),
the vertical velocity can be expressed as:

w = Arexpli(kix + Ly + mz — wz)]
+Ag expli(krx + [y + mgz — wz)] 3)

where k, | and m are the onshore, alongshore and vertical com-
ponents of the wavenumber, respectively, and w is the wave fre-
quency. A; and Ag are the incident and reflected wave ampli-
tudes. Alternatively, the wavenumber components can be written
as (k,I,m) = (Kycos(¢p +¢),Kysin(¢ +¢), m), where Ky is the
horizontal component of the wave number, ¢ is the horizontal an-
gle between the normal of the topography and wave vector and ¢
is the angle of rotation of the inclined plane (again, following the
E82 protocol and shown in Fig.1).

Substituting (3) into (2) and applying the bottom boundary con-
dition of no normal flow at x = —(tan¢)y + (%)z, the equality in
(2) is satisfied if and only if

kjcos¢ +1ising + mjtana = kgcos ¢ + Ilgsing + mptana  (4)

ljcos¢ —kysin¢ =lgcos¢ — kgsin¢ (5)

It should be noted that in the case of ¢ =0, (4) and (5) simplifies
to the case derived in E82 (i.e. with the setup of [; = Ig).

We additionally know that the dispersion relation for internal
waves can be expressed as

m2 m2 N2 _ o2
tan’f = —L_ = — R —tan’h= ——— 6
=L E TR D R =R (6)

where the angle 6 is the angle of the wave vector relative to the
horizontal plane. It is related to the angle of the group velocity
vector to the horizontal, g, in Fig.1 by the relation 6 = 5 + 0g.
Combining the conservation of wavenumber equations, (4) and (5),
as well as the dispersion relation, (6), we can solve for the re-
flected wavenumbers as a function of the incident wavenumber.
Ignoring the solution of wave propagation through the bottom, we
find:

mg

cos(ox —0)  sin(20) sin(2a) (cos(¢py) — 1)
m; ~ cos(e+6)

2 cos(a — 0) cos(a + 0)

(7)

which is the same as derived in the non-rotated E82 case. Note
that the subscripts are omitted for angle 6 since the angle is
conserved upon reflection. The horizontal components, k and |,
however, differ from the E82 solution given that we have ro-
tated the reference frame by angle {. The solution for each of
these reflected wavenumbers yields a quadratic equation of the
form ak,lx2 + by X+ ¢, =0, where x = (kg/k;), (Ig/l}) and the co-
efficients, in standard notation, are expressed, respectively, as:

a = sec?()
by = 2tan(¢) tan(¢y + &) — 2tan*(¢)
ck=tan2(2§)+tan2(¢:+§> — 2tan(¢y + ¢) tan(¢) (8)
m
—<m;§> sec’ (¢ +¢)
and
a = csc?(¢)
by =2cot(¢) cot(¢y + &) — 2 cot*(¢)
¢ = cot? ((2) + cot? (¢ + &) — 2 cot(¢y + &) cot(¢) (9)
m
—<mj§> esc(gr+¢)

Again, notice that the ratio of the reflected wavenumber to the
incident wave number reduces exactly to the E82 solution in the
limit of £ =0, as it should. The Egs. (7)-(9) constitute a one-to-
one relationship between the reflected and incident wavenumbers
solely as a function of the wave and topographic properties; the
utility of this relationship will be fully realized in Section 3 in the
construction of a linear ray tracing algorithm. It should be stressed
that although we have developed this theory with the intent of
using it for continental slope canyons, it is generalizable to any ar-
bitrary topography, as all topography can be described in terms of
a local tangent plane characterized by the two angles, « and ¢.

For the problem of internal wave reflection, the relation be-
tween the wave slope and the topographic slope, known as the
criticality, determines the directionality of the reflected ray. The
criticality or steepness, s, of the topography is calculated as

_ |tana]

" |tané,] (10)

where « is the local angle of inclination relative to the horizontal
and 6 is the group velocity angle relative to the horizontal. When
this relation is inserted into (10), and simplified using (6), we find
that

| tan |

= /0% - o] i
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When s <1, the topography is referred to as subcritical, and rays
undergo forward reflection. The converse is true for s> 1; that is
the topography is termed supercritical and the rays reflect back-
wards. In the case of the topographic slope exactly matching that
of the wave, the topography is deemed critical (i.e. s=1). Slope
criticality is the main differentiator between the different classes of
canyons we consider in this study, and we return to it in Section 4.

3. Ray tracing algorithm

In order to understand the fundamental dynamics inside the
idealized continental slope canyons or, more generally, wave re-
flection off any topography, a ray tracing algorithm is developed.
Rays propagate throughout the domain based upon their group ve-
locity, cg = (dw/0k, dw/dl, dw/dm) where w is the internal wave
frequency, which satisfies the dispersion relation (6). Thus, the in-
ternal wave group velocity can be expressed as:

Cg = %(sinz(G)cos(n), sin?(0) sin(n), —sin(@) cos(8))  (12)

where 7 is the horizontal angle, or mathematically, 7=
arctan(l/k), and K is defined as the resultant wavenumber (i.e.
K2 = k% + 12 + m?). If the stratification is constant (as it is in our
idealized canyon study), the rays conserve wavenumber (and fre-
quency) except during reflections. Since we do not consider Earth’s
rotation in this study, cg has no f dependence, although f can be
reinserted into the ray tracing algorithm by using the dispersion
relation with rotation. As the wave numbers change upon reflec-
tion, so too the group velocity changes. Eq. (12) is multiplied by
the time step, dt, to convert the group velocity to a ray propaga-
tion distance, i.e. X(t + dt) = x(t) + cgdt.

In addition to needing values of o and ¢ to evaluate the re-
flected wave numbers (7), (8) and (9), ¢, the horizontal angle of
the incoming ray relative to the horizontal normal line of the slope
(see Fig.1) is also required. This is the most time-consuming quan-
tity to calculate since it depends on the orientation of the ray (i.e.
quantity n) relative to the orientation of the slope (i.e. quantity ¢).
Given that the sign of ¢; is important, we define ¢, to be positive
if the topography’s normal line is to the left of the incoming ray
and negative if the topography’s normal line is to the right of the
incoming ray (e.g. ¢; >0 in Fig. 1).

Care must also be taken in calculating angle n after reflection.
While the relations of (8) and (9) yield reflected wave numbers,
and thus a value of n, this is only one possible value of ny (for
reference, we define this value as 7;). Specifically, the reflected
value of 1) could be [n;], [, (Im|—7/2) or (/2 — ). We
have developed a subroutine within the ray tracing algorithm to
determine which value of 1 should be used. Namely, for every re-
flection two of the four values of n will lead to the ray propagat-
ing beneath topography. Given that this is unphysical, these two 7
options, which can vary for each case of reflection, are discarded.
The final condition in choosing the reflected 7 is that the sign of
¢; must be the opposite of ¢p; that is, backward reflection is not
allowed. The remaining value of 5 is then taken as ng.

Rays are allowed to exit through all lateral boundaries and re-
flect back downwards from the sea surface. The wave numbers of
each ray are diagnosed, as increases in the vertical wavenumber
can lead to instability. The density of the rays is also tracked, as
a high ray density, and thus high energy density, can also lead to
instability. One property of the waves that we are not tracking is
the phase. We are therefore not able to diagnose regions of con-
structive or destructive interference.

The ray tracing algorithm is illustrated for various continen-
tal slope topographies: a vertical wall (with both normally- and
obliquely-incident rays), a subcritical slope and a supercritical
slope in Figs.2, 3, 4 and 5, respectively. For each case, only one
ray is shown for clarity.

a
( ) Example of Ray Tracing Algorithm; Vert. Wall
0
-50 \
E -100
N
-150
-200
2000
1000
0
0 -2000
-1000 -4000
-6000
y (m) -2000 x (m)

Example of Ray Tracing Algorithm; Vert. Wall (x-z plane)

=20

-40

-60

-80

m)

£-100
-120
-140
-160

-180 6 ;l

-7000 -6000 -5000 -4000 -3000 -2000 -1000 0 1000
x (m)

-200

Fig. 2. Ray tracing algorithm application for a single rave propagating into the do-
main from the Western boundary, normal to topography, and reflecting off a vertical
wall (i.e. @ =90°). (a) 3-dimensional view of the ray propagation and reflection. (b)
2-dimensional view of the ray propagation and reflection in the x-z plane.

In our implementation of the ray tracing algorithm for conti-
nental slope canyons, the wave is initialized at the Western bound-
ary (at x=0) in the form of approximately 2000 rays, spread
evenly over the y-z plane. For every initialization, there are both
upward- and downward-going rays. Thus, we use our discrete ray
tracing algorithm to accurately match the energy propagation of a
continuous internal wave. The rays are tracing out the group ve-
locity of the internal wave since we are interested in energy loss
resulting from reflection, and tracing of phase is a secondary con-
cern, and thus not included in the ray tracing algorithm. Although,
for the purpose of our canyon study, the topography is idealized
and known analytically, it is interpolated to a finer grid so that the
ray tracing algorithm is generalizable to any input topography, such
as that of an observed continental slope canyon. The ray tracing al-
gorithm is also able to read bathymetry files that have nonuniform
resolution and interpolate them onto an isotropic grid.

All rays are initialized with Eastward group velocity, although
this initial condition can be customized to any arbitrary value.
When rays interact with topography, be it the seafloor, shelf, or
canyon, the new wave number components are calculated accord-
ing to the three relations of (7), (8) and (9). The ray tracing al-
gorithm calculates the point of reflection and does not allow the
rays to propagate under the topography. Although it is known ex-
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(a) Example of Ray Tracing Algorithm; Vert. Wall with Oblique Reflection
0
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E-100
N
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-200
2000
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- _ 0
o -2000
-1000 -4000
-6000
y (m) -2000 x (m)

(b) OExample of Ray Tracing Algorithm; Vert. Wall with Oblique Reflection (x-z plane)

-20
-40
-60
-80
£ 100
N
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-160
-180 9 —l
-200
-7000 -6000 -5000 -4000 -3000 -2000 -1000 0 1000
(C) Example of Ray Tracing Algorithm; Vert. Wall with Oblique Reflection (x-y plane)
2000
1500
1000

2o P
>
A—*f""‘jx
0 ___/A-—“r’k N

-1000

-1500

-2000

-7000 -6000 -5000 -4000 -3000 -2000 -1000 0 1000
x (m)

Fig. 3. Ray tracing algorithm application for a single rave propagating into the do-
main from the Western boundary, oblique to topography, and reflecting off a verti-
cal wall (i.e. @ =90°). (a) 3-dimensional view of the ray propagation and reflection.
(b) 2-dimensional view of the ray propagation and reflection in the x-z plane. (c)
2-dimensional view of the ray propagation and reflection in the x-y plane.

actly for our idealized topography, the angle of vertical inclina-
tion, «, is calculated locally to make the algorithm as generalizable
as possible. In its current form, ¢ can be prescribed or calculated
upon each reflection. Since the magnitude of ¢ is constant for each
canyon we consider in this study, we prescribe it for the canyons
in this study since it reduces the ray tracing run time.

(a) Example of Ray Tracing Algorithm; Subcrit. Slope
0
=50
E-100
N ~
-150
-200
2000
1000
0
0 : -2000
~1000 -4000
: -6000
y (m) -2000 x (m)
0 Example of Ray Tracing Algorithm; Subcrit. Slope (x-z plane)
=20
-40
-60
-80
E 100
N
-120
-140
-160
-180 9 \
-200 :
-7000 -6000 -5000 -4000 -3000 -2000 -1000 0 1000

x (m)

Fig. 4. Ray tracing algorithm application for a single rave propagating into the do-
main from the Western boundary, normal to topography, and reflecting off a sub-
critical slope. (a) 3-dimensional view of the ray propagation and reflection. (b) 2-
dimensional view of the ray propagation and reflection in the x-z plane.

To quantify the potential for instability of the wave, we utilize
the wave Froude number, canonically calculated as

Un

Fr =
|Cp,H|

(13)

where Uy is the maximum horizontal flow speed associated with
the wave and ¢, y is the horizontal phase speed and expressed as
(Cpx, Cpy) = kz—‘ilz(k, ). The Froude number indicates potential re-
gions of instability if the ratio is greater than unity, or when the
flow speed exceeds the phase speed. From the dispersion relation,
(6), the phase speed in the denominator of (13) scales like

c _\/( wk )2+< wl )2_ w VN2 —? 1
PH=V 2 1 12 2+i2) T e m Om
(14)

where the last equality is derived from the dispersion relation, (6).
Therefore

Fro DA (15)
m

The numerator of (13) can likewise be approximated. Assume that
the wave fluxes some amount of energy along an infinite number
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(a) Example of Ray Tracing Algorithm; Supercrit. Slope
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Fig. 5. Ray tracing algorithm application for a single rave propagating into the do-
main from the Western boundary, normal to topography, and reflecting off a su-
percritical slope. (a) 3-dimensional view of the ray propagation and reflection. (b)
2-dimensional view of the ray propagation and reflection in the x-z plane.

of rays, given by
F=Excg (16)

where F is the energy flux per unit area, E is the energy density
and cg is the group velocity. If we assume that the total wave is de-
composed into an infinite number of rays, then (16) can be rewrit-
ten in terms of individual rays as

F =Eg x RDy X Cg (17)

where RD, is the ray density per unit area, diagnosable from the
ray tracing (with units of number of rays per unit area) and Ej is
the energy per a single ray (i.e. a constant). If (17) is integrated
over all space to include all rays, it will converge exactly to (16).
Thus the energy density, E, can be expressed as

E=Ey x RD, (18)

If we multiply both sides of (18) by some arbitrary unit area, we
find that the energy scales like the ray density. Given that the wave
energy is equipartitioned between kinetic energy and potential en-
ergy,

KE «RD (19)

where KE is the kinetic energy and RD is the ray density (with
units of number of rays). Since the horizontal kinetic energy scales

like U2, (19) simplifies to
UZ « RD (20)

and thus, we can plug this into (15) and estimate the Froude num-
ber as

~RD
o Y2F

1/m
Therefore, the ratio of the reflected wave’s Froude number to the
incoming wave’s Froude number can be taken exactly as

Frl _ RD] mq
= Vs ) * () (22)

Note that RD, is the number of rays initialized at the Western

boundary evaluated at the same depth as RD;. Both RDy and RD;

have units of number of rays per grid box. Taking the Froude

number for the gravest (lowest) baroclinic internal tide from Legg

(2014) (Frg here, where Frg = Huoin), we can solve for the
0

Fr (21)

N2 _@2
maximum final Froude number in any given grid cell:

RD; my Ug
Frimae = | o/ o=t | [( 22 o 2
1, mex RDo ‘(mo) max(Hox/N2 — wz) (23)

where Uy and Hy are the wave velocity amplitude and ocean depth
at the Western boundary, respectively. Thus, for every grid cell in
the ray tracing algorithm, we take the relative ray density and
maximum vertical wave number to calculate the maximum Froude
number. It is worth noting that, for our setup, Uy = 0.02 m/s and
Hp =200 m, leading to an initial Froude number of Fry = 0.32.
Thus, the wave is stable and will not break on its own; all breaking
is the result of scattering off topography. While ray tracing algo-
rithms have been used before to understand internal wave reflec-
tion (Manders and Maas, 2004; Maas, 2005; Drijfhout and Maas,
2007; Rabitti and Maas, 2013; 2014), the ray tracing algorithm that
we develop is novel in that it uses the change in ray density and
vertical wavenumber to estimate the maximum Froude number as
a result of ray reflection. We present a synthesis plot of the ray
tracing capabilities using an idealized continental slope canyon, the
specific topography of interest in this study, after we introduce
these canyons in Section 4.

4. Canyon setup

While this theory can be tested on any arbitrary topography, we
have developed it to gain an understanding of internal wave dy-
namics in submarine canyons. Additionally, given that one of the
variables the ray tracing algorithm uses to diagnose instability is
ray density, canyons are an ideal testbed since they are one of the
few topographies that can lead to changes in ray density due to
3D wave focusing effects. To construct the V-shaped canyons, we
take two symmetric inclined planes and join them at the head (see
Fig.1). The first type of canyon we construct is the near-critical
slope canyon, such that the center of the canyon is of near-critical
slope. For the near critical slope canyon the thalweg steepness,
Sthalweg» 1S 0.94, so the topographic slope is near-critical (recall that
a steepness value of unity is considered critical) for our case of the
M2-tidal frequency. This is constant for all canyons in the class,
as the group velocity angle is dictated by the stratification and
wave (tidal) frequency, both of which are held constant as well
aS U paiweg» Which is also held constant. By construction, the side-
walls for the near-critical slope canyon are near-critical to super-
critical (ie. o = Ynear-critical ~ 90°). A schematic of this type of
canyon is shown in Fig.6a. Critical and near-critical slopes have
been the topic of numerous studies as they are conducive to en-
hanced mixing; upon reflection all wave rays are aligned alongs-
lope. This high density of wave rays leads to a high energy density,
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Fig. 6. Two classes of V-shaped canyons analyzed in this study. (a): near-critical
slope canyon, (b): flat bottom canyon. Note that throughout our suite of experi-
ments, angle ¢ is varied identically for both class of canyons. Thus, the two differ-
ent classes of V-shaped canyons are different in angle « only. The sidewalls of each
canyon have isobaths, or lines of constant depth, drawn for clarity.

and thus the potential for instability, wave breaking, and subse-
quent mixing (Ivey and Nokes, 1989). It is thus possible that such
a canyon could lead to enhanced levels of mixing.

The second class of V-shaped canyon constructed is a flat bot-
tom canyon. In this case, the topography does not slope smoothly
between the sea floor and continental shelf, as was the case for the
near-critical slope canyon, but instead steps up at the V-boundary
via a vertical wall. A schematic of this canyon can be found in
Fig.6b. The motivation behind the design of the canyon is that it
possesses the potential to act as a wave trap for sufficiently large ¢
(Maas etal., 1997). Note that both types of canyons have the same
profile when viewed from the sea surface (i.e. in the x-y plane),
but vary in their sidewall steepness (angle «) only. Throughout
the suite of experiments, ¢ is varied identically for both classes
of canyons. For both classes of canyons, the canyon length, L, is
held constant while the canyon mouth is altered to modulate ¢.
Additionally, both classes of canyons have a maximum topographic
height, H, that is only one-half of the total domain. Thus, we have
established two differing values of « through the construction of
these two types of V-shaped canyons, as well as a sweep of ¢,
which is systematically varied for both cases.

Table 1
Summary of parameters of interest.
o ¢(°) H(@m) L(m) ®? (1078 s72) N2 (1076 s72)
Qnear—critical ~ 22-8 100 744 1.99 1.00
48.3 100 744 1.99 1.00
523 100 744 1.99 1.00
644 100 744 1.99 1.00
832 100 744 1.99 1.00
90° 228 100 744 1.99 1.00
48.3 100 744 1.99 1.00
644 100 744 1.99 1.00
73.5 100 744 1.99 1.00
73.5 150 744 1.99 1.00
73.5 200 744 1.99 1.00
73.5 100 1046.2 199 1.00
73.5 100 1046.2  0.995 1.00
83.2 100 744 1.99 1.00

While the two classes of canyons are differentiated by their
value of «, « for the near-critical slope canyons has some ¢-
dependence. That is, based on the construction of the topography,

(24)

such that for small values of ¢, the slope of the sidewalls is ap-
proximately the thalweg slope (i.e. tana ~tano;). As ¢ increases,
the sidewall slope increases to be larger than the thalweg slope. In
the limit of ¢ — 90°, the sidewall slope approaches vertical. There
is thus a non-negligable ¢-dependence for the near-critical slope
canyon sidewall steepness. This implies that the sidewall steepness
for the near-critical slope canyons is near-critical to supercritical.
It is thus preferable, and the approach of this paper, to differenti-
ate canyons classes through their thalweg angle of inclination, oy,
which is held fixed for each canyon class.

To summarize, we have two classes of V-shaped canyons, that
are distinguished only by their sidewall steepness, «. The first class
of canyons has a thalweg steepness that is near-critical and so,
by construction, near-critical to supercritical sidewalls. The second
class of canyons has vertical walls, which are thus very supercrit-
ical. The second parameter of interest is the canyon aspect ratio,
¢, which is varied systematically for both canyons. We modulate
¢ by adjusting the canyon width only. Both canyons have a fixed
height, H, of 100m and a fixed length, L, of 744 m. See Fig.6 for
the geometry of the two canyon classes. In Fig.6, isobaths, or lines
of constant depth, are overlaid on the sidewalls to make clear that
the canyons vary in «. Parameters of interest, both topographic and
those for the wave and ambient fluid, are listed in Table 1, as well
as their corresponding values for the submarine canyons consid-
ered in this part of the study.

While these canyons follow idealized V-shape profiles with two
different classes of sidewall steepnesses, their general profile is
rooted in reality. In a statistical analysis of the occurrence of sub-
marine canyons, Harris and Whiteway (2011) separated global sub-
marine canyons into differing classes based on canyon geometry.
They find that canyons surrounding New Zealand and Western
North America have very small mean thalweg slopes (3.8 and 4.3°,
respectively) and lie on active margins, which leads to steep side-
walls. These observed canyons are very similar to our flat bottom
canyon class. They also find canyons, such as surrounding India and
Australia that have larger thalweg slopes (ranging from 1.1 to 20.9°
and 0.8 to 23.7°, respectively) which can be near-critical for cer-
tain wave frequencies. They observe these canyons to be on passive
margins, which is indicative of more gradual sidewall slopes, akin
to our near-critical slope canyon class. Thus, while certain simpli-
fications have been used in the development of our topography,
both classes of canyons are similar to submarine canyons observed
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(a) Example of Ray Tracing Algorithm; Flat Bottom Canyon
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Fig. 7. An example of the ray tracing algorithm for a flat bottom canyon with
¢ = 64.4°. (a): 3-dimensional perspective , (b): 2-dimensional perspective in the x-y
plane (i.e. downward looking). A large number of rays are initiated at the Western
boundary, spanning the x-z plane, with both upward and downward going com-
ponents (only one ray is shown here for clarity). Rays then propagate Eastward
according to the dispersion relation and can scatter off topography. Here the ray
reflects off the canyon sidewall and enters onto the continental slope obliquely. As
before, x is aligned with longitude (West to East) and y is aligned with latitude
(South to North).

and there is the potential to apply the lessons learned in this ide-
alized framework to real continental slope canyons. We will return
to this in Part 2 of this study (Nazarian and Legg, 2017).

Now that we have defined our canyon classes, we present a
schematic of internal wave reflection in flat bottom and near-
critical slope canyons, similar to that presented for the cases of
a vertical wall, subcritical slope and supercritical slope, in Figs.7
and 8, respectively. Additionally, in Fig.9, we present all of the cal-
culations that can be conducted using the ray tracing algorithm,
outlined in Section 3, for the case of a near critical slope canyon of
moderate width.

5. Results

We now use the ray tracing algorithm to probe the parame-
ter dependence of internal wave-driven instability in continental
slope canyons. We start by considering the case of the flat bot-
tom canyon and present individual ray trajectories and vertically-
integrated relative increase in ray density for three different
canyon aspect ratios in Fig. 10. We do not consider increases to the
vertical wavenumber here, as the vertical wavenumber does not
change upon reflection off vertical walls (see Section2). Fig.10 il-

(a) Example of Ray Tracing Algorithm; Near-Crit. Slope Canyon
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Fig. 8. As in Fig.7, but now for the case of a near-critical slope canyon.

lustrates a ¢-dependence on the pattern of vertically-integrated in-
crease in ray density.

For a relatively wide canyon, Fig. 10a-i illustrates that rays only
reflect, at most, one time within the canyon region (some rays
propagate over the canyon undisturbed). Additionally, all of these
rays are then reflected out of the canyon. From geometric op-
tics, we know that this is true for all flat bottom canyons with
¢ <30°. While the rays, and their associated energy, are able to
exit the canyon without being trapped, the canyon does act to fo-
cus them toward the center, as seen in the relative ray density plot
in Fig. 10a-ii. Since the vertical wavenumber cannot increase upon
reflection, ray focusing is the only potential mechanism by which
wave instability can be achieved in this framework.

In Fig. 10b, we consider a canyon of moderate width (i.e. { =
48.3°). Note that subsequent ray reflections inside the canyon are
now possible. Again, from geometric optics, we know that at ¢ =
45° the second reflection must be further into the canyon. This
is in contrast to the outward reflection of rays that characterizes
the wide canyon in Fig. 10a. The magnitude of relative ray density
per grid box is slightly enhanced in this regime, compared to the
first regime and the pattern of increased ray density is more evenly
distributed throughout the canyon region, leading to a higher con-
centration of ray energy. Additionally, note that this setup leads to
wings of increased ray density extending outside the canyon re-
gion, a result of ray scattering and focusing. This can be an addi-
tional source for instability extending away from the topography,
as the ray density can also be elevated, and thus lead to mixing,
on the shelf.
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Fig. 9. Various diagnostics produced by the ray tracing algorithm for the case of a near-critical slope canyon with ¢ =52.3°. Six hundred individual rays are used here for
illustration, and thus individual rays are not distinguishable. (a) Ray tracing with 600 individual rays. (b-i) Relative increase in ray density, integrated in the vertical, and (b-ii)
ray density in the x-z plane along the canyon center. (c-i and d-i) Relative increase in vertical wavenumber and maximum Froude number in the x-y plane at mid-depth,
and (c-ii and d-ii) in the x-z plane along the canyon center, respectively. Notice here that Fr> 1 at various locations in the canyon, indicating potential regions of instability.
Increased Froude number is also present for a given depth, indicating that instability can also occur on the shelf as a result of canyon processes. Given that the incoming
wave has Fr < 1, this increase in Fr can be attributed to canyon effects.
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Fig. 10. Ray tracing (i) and ray density (ii) conducted for the case of the flat bottom canyon. The panels, from top to bottom, represent the cases of relatively large (a),
moderate (b) and small (c) canyon width, respectively. The ray tracing plots only show a limited number of rays to illustrate the reflection patterns, while the ray density
plots are the result of a large number of both upward- and downward-going rays spanning all of y and z, initiated at the Western boundary. Note that panel (c) is zoomed

in due to the canyon being very narrow.

Fig. 10c illustrates the case of a narrow flat bottom canyon. For
this instance, it is possible for rays entering the canyon region to
have multiple reflections and remain trapped in the canyon, lead-
ing to high ray/energy density as in canyons of more moderate
width (i.e. Fig. 10b). Yet, the ray tracing output illustrates that very
few rays are able to enter the canyon region due to the decreasing
mouth width corresponding to increasing ¢. This is potentially a
mitigating factor in how much energy can be concentrated in flat
bottom canyons for large values of ¢.

Despite having a different thalweg slope, «;, we find that the
near-critical slope canyon case behaves similarly to the case of
the flat bottom canyon (Figs.11a and 12a). The main distinction
between the near-critical slope canyon and flat bottom canyon is

that the sidewalls are not vertical in the case of the near-critical
slope canyon, which allows a change/redistribution of wavenum-
ber upon reflection, as outlined in Section 2. The main implication
of this physics is that, for relatively wide canyons experiencing, at
most, one reflection (¢ < 30°), the rays are still scattered out of the
canyon upon reflection, but onto the shelf. This is in contrast to
the flat bottom canyon case, in which rays are scattered back out
towards the abyss (see Fig. 10a).

We next consider the case of a slightly narrower canyon, again
with ¢ =48.3° in Figs. 11b and 12b. For the case of the near-critical
slope canyon, the transition point for outward scattering and sec-
ondary reflections no longer occurs at ¢ =30° due to the non-
vertical sidewalls. Instead, the transition point is shifted towards
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Fig. 11. Ray tracing (i) and ray density (ii) conducted for the case of the near-critical slope canyon. The panels, from top to bottom, represent the cases of relatively large (a),
moderate (b) and small (c) canyon width, respectively. The ray tracing plots only show a limited number of rays to illustrate the reflection patterns, while the ray density
plots are the result of a large number of both upward- and downward-going rays spanning all of y and z, initiated at the Western boundary. Note that panel (c) is zoomed

in due to the canyon being very narrow.

higher ¢. This is a direct implication of the dispersion relation and
the redistribution of wavenumber components upon reflection off
the topography. At this higher transition point, all rays are scat-
tered further into the canyon. This threshold is derived from Eq.
(8). Specifically, rays begin to be reflected into the canyon at the
transition of kg = 0, and thus the quadratic equation with variable
kg/k; simplifies to

tan?(¢) + tan® (¢ + ¢) — 2 tan(¢; + &) tan(g)
2
_(m—'f) secX(¢y+¢) =0 (25)
my

We know that for the initial reflection, ¢, can either be 4 ¢ based
on which side of the canyon the ray reflects off. Both positive and

negative values of ¢; yield the same solution so, for ease, we use
¢ = —¢ which renders (25)

tan®(¢) = (%’:)2 (26)

where the ratio of the vertical numbers is given in (7). This yields a
transitional ¢ of 45.3°, which is confirmed by the ray tracing algo-
rithm. While the point of transition is shifted, the same underlying
physics is present: rays are now reflected back into the canyon re-
gion where they can further reflect and scatter. As the number of
reflections increases, so too does the likelihood of increasing verti-
cal wavenumber and, potentially, breaking. There also continue to
be wings of enhanced ray density extending from the canyon re-
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Fig. 12. As in Fig. 11, except now the maximum ratio of reflected vertical wave number to incident vertical wave number is plotted along the canyon center, as the vertical

wave number can change within a near-critical slope canyon.

gion, another result of the canyon ray scattering. Additionally, the
increase in vertical wave number, another precursor for potential
instability, is more pronounced and encompasses a larger spatial
area, for this higher ¢ canyon (see Fig. 12b).

For large values of ¢, Figs.11c and 12c suggest that narrow
near-critical slope canyons show a significantly smaller region of
wave focusing and increased vertical wavenumber than narrow flat
bottom canyons and thus, potentially less mixing. This is due to
the fact that the ray density in the near-critical slope canyons de-
creases much faster as a function of ¢ than that of the flat bot-
tom canyon, which can be seen in a comparison of Figs.10 and
11. Although the ray density decreases rapidly and the envelope
of increased vertical wavenumber has shrunk, the magnitude of
the increase in vertical wavenumber increases to a greater extent
compared to near-critical slope canyons of moderate ¢, thus po-
tentially mitigating some of the effects of decreased wave focus-
ing. These three near-critical slope canyon cases are summarized
in Figs. 11 and 12 in a similar fashion to Fig. 10.

So far we have only used the ray tracing to consider variations
in two topographic parameters: the canyon aspect ratio (i.e. ¢) and
the thawleg slope (i.e. o;). Given the relative speed of the ray trac-
ing algorithm versus a fully-nonlinear numerical model, we can
also use the ray tracing algorithm to probe the sensitivity of our
results to the topographic quantities that we have hitherto held
constant: canyon height, H, and canyon length, L. To complete this
test, we conduct the ray tracing for the case of the flat bottom
canyon with ¢ = 73.3°, as the ray tracing algorithm suggests this
is where the ray density for flat bottom canyons is at a maximum
and we are interested in how changes to these parameters can
make the canyon more or less effective at leading to wave insta-
bility. We only consider the flat bottom canyon here, as changing
the height of the near-critical slope canyon implies an increase in

the canyon length, and we want to separate the height and length
dependence.

First, we investigate the implication of increasing the canyon
height, the results of which are shown in Fig.13. As the canyon
height increases from the default value of 100 m (Fig.13a) to the
full depth of the domain, 200 m (i.e. from sea floor to sea surface,
Fig. 13c), the vertically-integrated ray density increases. Thus, taller
canyons are more efficient at focusing and, potentially, trapping in-
ternal wave energy. Given that the only mechanism for instability
in the flat bottom canyon is increased ray density, we would ex-
pect this increase in canyon height to lead to an increased poten-
tial for instability. Qualitatively, Fig. 13 suggests that the ray density
within the canyon and outside the canyon mouth, and therefore
the instability within the canyon and outside the canyon mouth,
increases linearly with increasing canyon height. An appropriate
scaling for the height-dependence of the instability and potential
for energy loss in canyons may thus be estimated as H/D where
H is the height of the canyon and D is the full domain depth. In
the case of Fig.13c, this ratio is equal to unity. Perhaps intuitive,
this scaling is important when transferring this understanding to
fully-nonlinear GCMs where canyon height is one of the important
differentiating factors between canyons. Also note that this scaling
is valid for canyons with critical and supercritical side slopes, but
not for subcritical side slopes which lead to forward wave scatter-
ing and propagation onto the shelf.

We similarly test the sensitivity of wave focusing in canyons to
the length of the topography. We again consider the case of the
¢ =73.5° flat bottom canyon and now consider the Froude num-
ber as it provides more intuition when considering slices in the
x-z plane than does the ray density at each depth. The Froude
number from the default (i.e. H= 100 m) ray tracing calculation
is shown in Fig. 14a. The default length of the canyon for all simu-
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Fig. 13. Vertically-integrated relative increase in ray density for a flat bottom canyon with height 100 m (a), 150 m (b) and 200 m (c). As the canyon height increases, canyons

become more efficient at focusing and, potentially, trapping internal wave energy.

lations was 744 m (see Table 1). We elongate the canyon to a length
of 1046.2 m (roughly 1.4 times longer than the default canyon), as
well as increase the canyon width, so that ¢ remains fixed at 73.5°.
The result is shown in Fig. 14b. There is a marked increase in the
spatial extent of Fr > 1 for the longer canyon. In the default case,
the horizontal extent of the region of potential instability was ap-
proximately 400 m, while for the elongated canyon the region of
potential instability is approximately 600 m (this approximation of
a 50% increase in the extent of instability is in approximate agree-
ment with the factor of 40% increase in the canyon length). The
vertical extent of instability remains relatively constant. There is
also an increase in the magnitude of the Froude number in the
potentially unstable regions. Thus, this sensitivity test suggests that

the potential energy lost from the internal wave due to the canyon
may scale like parameter L, the length of the canyon.

Note, however, that it is not the absolute length of the canyon
that is important, but the canyon length relative to the wavelength
of the internal tide. Between Fig. 14a and b, the wavelength is fixed
for the gravest baroclinic internal tide, but if the wave were of
a different frequency, and thus a different wavelength, we may
expect more or less of the wave to interact with and reflect off
the canyon topography. This hypothesis is tested in Fig. 14c. As the
wavelength is doubled, the spatial extent of the potential instabil-
ity decreases by approximately a factor of one half. The magnitude
of the Froude number in the regions of potential instability is also
reduced. This suggests that the energy loss in the canyon region



14 R.H. Nazarian, S. Legg/Ocean Modelling 118 (2017) 1-15

(a) Flat Bottom Canyon; ¢ = 73.50; y=0m;L=744m )
-20
1.75
-40
15
-60
-80 1.25
. fre
£-100 1 %
N [}
=
-120 0.75
-140
0.5
-160
-180 025
-500 0 500 1000
b x (m)
Flat Bottom Canyon; ¢ = 73.5;y = 0 m; L = 1046.2 m ,
-20
1.75
-40
e 15
-80 1.25
e e
E-100 1%
N [
=
-120 0.75
-140
0.5
-160
150 0.25
-500 0 500 1000
(c) x (m)
Flat Bottom Canyon; ¢ = 73.5;y = 0 m; L = 1046.2 m; A=2%2
2
-20
1.75
-40
-60 L3
-80 1.25
- e
E-100 1 %
N 3
=HeD 0.75
-140
0.5
-160
-180 s
-500 0 500 1000

X (m)

Fig. 14. Maximum Froude number from the ray tracing algorithm, taken along the
center of a flat bottom canyon in the second regime. (a) Flat bottom canyon of the
default length of 744 m and (b) flat bottom canyon of the new length of 1046.2 m
and (c) flat bottom canyon of the new length of 1046.2 m with double the frequency
of that in (a) and (b). For all canyons, ¢ remains constant at 73.5°. Note the varia-
tion in the colorbar now for Fr > 1. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

may thus scale like L/Ax where Ay is the horizontal component
of the wavelength aligned with the canyon axis. We hypothesize
that this scaling is likewise appropriate for the near-critical slope
canyon but we do not test that here, as we can only differentiate
the effects of changing canyon height and length by considering
the case of vertical sidewalls.

6. Discussion and conclusion

There have been extensive numerical modeling studies regard-
ing internal tide energy loss at a variety of topographic features,
yet submarine canyons, specifically canyons on the continental
slope, have not received sufficient attention. As a first attempt to
study the underlying physical processes and understand the to-
pographic parameters that govern the strength of canyon-induced
mixing, we have developed a ray tracing algorithm from the lin-
ear theory to be used on two classes of idealized continental slope
canyons. This ray tracing algorithm tracks quantities such as ray
density and wave number. From these quantities, we have devel-
oped an estimate of the Froude number, which is a measure of the
likelihood of instability and mixing. This is the first time that a
ray tracing algorithm has been used to estimate the Froude num-
ber and the likelihood of instability resulting from internal wave
reflection off topography.

In the construction of this ray tracing algorithm from the linear
theory, we have not made any assumptions that are canyon spe-
cific; we have simply extended the internal wave reflection the-
ory to some 3D rotated, inclined plane (with parameters o and
¢). This algorithm could therefore be applied to wave reflection
off any arbitrary topography, since the patch of topography that
a ray reflects off can, on some infinitesimal level, be considered a
3D rotated, inclined plane. The ray tracing may, in the future, be
used as a precursor to a GCM or observational campaign, to iden-
tify whether instabilities occur for given topography and where
those instabilities occur. The ray tracing algorithm does not require
significant computational power or time and may thus be a pow-
erful tool in considering whether GCM-scale simulations or field
programs should be conducted, as well as the scope of such simu-
lations or observations.

Here we have provided numerous examples of the utility of
the ray tracing algorithm for continental slope canyons, in addi-
tion to showing its generalizability for other topographies. Perhaps
contrary to intuition, we have observed that canyons of interme-
diate aspect ratio are most efficient at increasing ray, and thus
energy, density, which can thereby lead to mixing. Although the
threshold for subsequent reflections in the canyon is different be-
tween the flat bottom (¢ = 30°) and the near-critical slope canyons
(¢ =45.3°), both canyon classes exhibit an increase in ray den-
sity for moderate width canyons (i.e. for canyons with LocW, where
W is the canyon width). Additionally, for the case of near-critical
slope canyons, certain values of ¢ can lead to a 15% or larger in-
crease in vertical wavenumber, and thus a decrease in the verti-
cal length scale, functioning as another potential catalyst for insta-
bility. We have also tested the sensitivity of our results based on
the default values of canyon height and length. Informed by the
ray tracing algorithm for the case of a flat bottom canyon with
some existing instability present in the default case, we conducted
further experiments with slightly modified values of H, L, and A,.
Based on the changes to the spatial scales of potential instability,
we proposed that canyon instability and energy loss can be scaled
by H/D and L/Ax. This is one direct way that the ray tracing can
inform parameterizations for tidally-driven mixing in continental
slope canyons in GCMs.

So far, we have not offered any test of robustness that the ray
tracing algorithm correctly predicts regions of instability in conti-
nental slope canyons. Our goal in this paper is to document the
formation of a ray tracing approach and employ it to obtain a
first-order understanding of internal wave scattering dynamics in
continental slope canyons. In Part 2 of this study (Nazarian and
Legg, 2017), we compare our ray tracing results with calculations
of instability diagnosed from a fully-nonlinear GCM as a means
of testing the ray tracing’s robustness. Additionally, we combine
the utility of the ray tracing algorithm and the utility of a GCM



R.H. Nazarian, S. Legg/Ocean Modelling 118 (2017) 1-15 15

to further explore the idealized parameter space that we have de-
veloped here. Used in tandem, these two approaches allow us to
gain a deeper understanding of the effects of canyon sidewall slope
and canyon aspect ratio in regulating internal wave-driven mixing
within and around canyons.
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