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a b s t r a c t 

When internal waves interact with topography, such as continental slopes, they can transfer wave en- 

ergy to local dissipation and diapycnal mixing. Submarine canyons comprise approximately ten percent 

of global continental slopes, and can enhance the local dissipation of internal wave energy, yet param- 

eterizations of canyon mixing processes are currently missing from large-scale ocean models. As a first 

step in the development of such parameterizations, we conduct a parameter space study of M2 tidal- 

frequency, low-mode internal waves interacting with idealized V-shaped canyon topographies. Specifi- 

cally, we examine the effects of varying the canyon mouth width, shape and slope of the thalweg (line 

of lowest elevation). This effort is divided into two parts. In the first part, presented here, we extend the 

theory of 3-dimensional internal wave reflection to a rotated coordinate system aligned with our ideal- 

ized V-shaped canyons. Based on the updated linear internal wave reflection solution that we derive, we 

construct a ray tracing algorithm which traces a large number of rays (the discrete analog of a continu- 

ous wave) into the canyon region where they can scatter off topography. Although a ray tracing approach 

has been employed in other studies, we have, for the first time, used ray tracing to calculate changes 

in wavenumber and ray density which, in turn, can be used to calculate the Froude number (a measure 

of the likelihood of instability). We show that for canyons of intermediate aspect ratio, large spatial en- 

velopes of instability can form in the presence of supercritical sidewalls. Additionally, the canyon height 

and length can modulate the Froude number. The second part of this study, a diagnosis of internal wave 

scattering in continental slope canyons using both numerical simulations and this ray tracing algorithm, 

as well as a test of robustness of the ray tracing, is presented in the companion article. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Internal waves are efficient transmitters of energy across ocean 

basins. These waves, either generated by the winds or tidal 

flows over rough topography ( Munk and Wunsch, 1998 ) propagate 

through the ocean basins until they are forced to break by topo- 

graphic features, or non-linear wave-wave interactions ( MacKinnon 

et al., 2013 ). To first approximation, 30–60% of the initial wave en- 

ergy makes it away from the generation site and previous stud- 

ies have shown that a sizable portion of this energy can make it 

to the edge of the basins where the continental slope is encoun- 

tered ( St. Laurent and Nash, 2004; Klymak et al., 2006 ; Alford et al., 

2011 ; Waterhouse et al., 2014 ). At these continental slopes, internal 

waves are scattered, leading to higher wavenumbers and/or greater 

∗ Corresponding author. 
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energy density. They can then become unstable (due to shear in- 

stability, convective instability or some combination thereof), break 

and lead to diapycnal mixing. Diapycnal mixing due to internal tide 

breaking, both near the generation site and in the farfield, is an 

important component of the global meridional overturning circu- 

lation ( Ilicak and Vallis, 2012; Talley, 2013 ). 

Over the past two decades, there have been numerous stud- 

ies aimed at understanding the parameter space for which internal 

waves break over a host of farfield topographies, as well as at the 

generation site itself ( Legg and Klymak, 2008; Nikurashin and Legg, 

2011; Johnston et al., 2011 ). Plane slopes ( Cacchione and Wun- 

sch, 1974; Ivey and Nokes, 1989; Hallock and Field, 2005; Nash 

et al., 2007; Kunze et al., 2012; Hall et al., 2013 ), convex and con- 

cave slopes ( Legg and Adcroft, 2003 ), ridges and mounts ( Johnston 

and Merrifield, 2003; Klymak et al., 2013 ), channels ( Drijfhout and 

Maas, 2007 ) and isolated/random topographic features ( Egbert and 

http://dx.doi.org/10.1016/j.ocemod.2017.07.002 

1463-5003/© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Ray, 20 0 0; Buehler and Holmes-Cerfon, 2011; Legg, 2014 ) have 

been studied from both observational and modeling perspectives. 

Despite their potential to be a sink of internal tidal energy, 

continental slope canyons have been largely overlooked by the 

modeling community. As Kunze et al. (2002) suggested, submarine 

canyons may indeed be significant sinks of internal wave energy 

due to both their frequency along the continental slope and their 

geometries. Given that about 10% of the continental slope is carved 

out by such canyons, and that the geometry of the canyons may 

be conducive to wave focusing, Carter and Gregg (2002) argued 

from their observations of Monterey Canyon that the internal wave 

energy dissipation and subsequent mixing is non-negligible (ap- 

proximately the same order of magnitude as the mixing currently 

parameterized in ocean general circulation models) and warrants 

study in more depth. This conclusion is in agreement with other 

observational studies of internal wave-driven mixing in continen- 

tal slope canyons ( Gordon and Marshall, 1976; Hotchkiss and Wun- 

sch, 1982; Gardner, 1989; Petruncio et al., 1998; Codiga et al., 1999; 

Bosley et al., 2004; Bruno et al., 2006; Lee et al., 20 09a; 20 09b; Xu 

and Noble, 2009; Gregg et al., 2011; Hall and Carter, 2011; Water- 

house et al., 2013; Vlasenko et al., 2016 ). 

While our study is motivated by observations of mixing in ac- 

tual continental slope canyons, we begin with idealized V-shaped 

canyons in order to tease out the fundamental dynamics (we fur- 

ther justify this choice of topography in Section 4 ). We develop and 

employ a ray tracing algorithm to explore the impact of canyon ge- 

ometry on ray focusing and wave number within a linear context. 

While ray tracing algorithms have been used to understand inter- 

nal wave dynamics before ( Manders and Maas, 2004; Maas, 2005; 

Drijfhout and Maas, 2007; Rabitti and Maas, 2013; 2014 ), for the 

first time, we use reflection information to calculate the Froude 

number (formally defined in Section 3 ) and hence estimate the 

likelihood for instability. Thus, without the use of a fully-nonlinear 

general circulation model (GCM), we aim to predict, using our lin- 

ear ray tracing algorithm, where regions of instability may occur 

for wave scattering off idealized, V-shaped canyon topography. 

The idealized canyons we have chosen to analyze are oversim- 

plifications of real canyon bathymetry; however canyons tend to 

follow a roughly V-shaped profile ( Shepard, 1981 ) and our focus 

here is not to capture every detail of particular wave-topography 

interaction, but to explore the parameter space ( Carter and Gregg, 

2002 ). Specifically, we do a suite of experiments to vary the geo- 

metric parameters of the ratio of canyon mouth opening to canyon 

length, as well as the shape/thalweg (line of lowest elevation) 

slope, to understand the wave reflection behavior and resulting 

instability. These are two important geometric parameters which 

vary between observed continental slope canyons, and thus a good 

starting point for our study ( Gregg et al., 2011; Hall and Carter, 

2011 ). As a further simplification, we only consider remotely- 

generated M2 tidal-frequency, mode-one internal waves, a reason- 

able assumption as a sizable fraction of the internal wave energy 

is observed to be at the M2 tidal-frequency ( Munk and Wunsch, 

1998 ). 

The goal of Part 1 of this study is to extend the internal wave 

reflection theory to 3D, rotated topography and to use this theory 

to construct a ray tracing algorithm. Our objective in designing this 

ray tracing is to follow a large number of rays through the canyon 

region as they reflect off the topography, and store information on 

the trajectory of these rays. This stored information then allows us 

to (i) predict regions where instability is energetically possible and 

(ii) understand the processes that cause these regions to experi- 

ence instability. In Part 2, through a comparison with numerical 

simulations, we also seek to test the robustness of this ray trac- 

ing derived from the linear theory. This ray tracing will then be 

used in tandem with a fully nonlinear GCM to understand the to- 

pographic control on wave breaking and subsequent energy loss 

( Nazarian and Legg, 2017 ). 

In this paper, we build upon existing internal wave reflection 

theory and use this theory as the backbone of our ray tracing algo- 

rithm to understand internal wave scattering in continental slope 

canyons. In Section 2 , we present the physical theory of 3D wave 

reflection. Based on this theory, we develop the methodology used 

in the linear ray tracing algorithm in Section 3 and present exam- 

ples of the ray tracing for various idealized topographies. This ray 

tracing code may be applied to internal wave scattering off any ar- 

bitrary topography, as the algorithm depends only on the local to- 

pographic parameters. We then present the idealized canyons, and 

the justification for such canyons, in Section 4 . In Section 5 we an- 

alyze the results of the ray tracing algorithm for two classes of 

idealized continental slope canyons to obtain a first-order under- 

standing of internal wave dynamics in continental slope canyons. 

We find that the linear ray tracing algorithm predicts large en- 

velopes of both increased ray density and, for canyons with non- 

vertical sidewalls, an increase in vertical wave number, both of 

which can contribute to the formation of instabilities. We also find 

that this region of instability due to topographic focusing is mod- 

ified by the spatial extent of the canyon, including the canyon 

height and relative canyon length. In Part 2 of this study we will 

add to this understanding by complimenting the ray tracing with a 

fully-nonlinear GCM, as well as using the GCM to test the robust- 

ness of the ray tracing algorithm ( Nazarian and Legg, 2017 ). 

2. Theory 

When low mode internal waves are scattered by topography, 

energy can be effectively transferred to higher vertical wavenum- 

bers, which leads to a higher Froude number. This nondimensional 

number, Fr, quantifies the stability of the flow and the likelihood of 

transitioning into the turbulent flow regime. We thus develop the 

3D internal wave scattering theory applied to a rotated coordinate 

system to calculate the wavenumber as a function of the geometry 

of the topography by which it is scattered, as well as the original 

wave properties. The original theory of internal wave reflection off

topography was set forth by Phillips (1963; 1966) and considered 

further by Eriksen (1982) . We adapt the setup of Eriksen (hereafter 

E82) to a rotated coordinate system to construct the two symmet- 

ric sides of the V-shaped canyon. 

We start by considering a plane slope, inclined at an angle, α, 

relative to the horizontal. We then rotate the plane by another an- 

gle, ζ , relative to the y- axis. These angles are displayed in Fig. 1 

and the resulting inclined, rotated plane comprises one sidewall of 

our V-shaped canyon. 

Similar to E82, we consider a semi-infinite domain with x de- 

noting the onshore direction, y denoting the alongshore direction 

and z denoting the vertical (as seen in Fig. 1 ). We start with the 

linearized, inviscid, non-rotating Boussinesq equations and assume 

that nondivergence is satisfied. Our guiding equations can thus be 

written as: 

∂u 

′ 
∂t 

= − 1 

ρ0 

∂ p ′ 
∂x 

∂v ′ 
∂t 

= − 1 

ρ0 

∂ p ′ 
∂y 

N 

2 w 

′ + 

∂ 2 w 

′ 
∂t 2 

= − 1 

ρ0 

∂ 2 p ′ 
∂ t∂ z 

∂u 

′ 
∂x 

+ 

∂v ′ 
∂y 

+ 

∂w 

′ 
∂z 

= 0 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(1) 

where the prime notation denotes the wave perturbation fields. u, 

v and w are the velocity components in x, y and z , respectively, and 

p is the pressure. N 

2 is the background density stratification, which 

is defined as N 

2 = − g 
ρ0 

∂ρ
∂z 

, where ρ0 is the background density. 



R.H. Nazarian, S. Legg / Ocean Modelling 118 (2017) 1–15 3 

Fig. 1. Schematic of the wave reflection from sloping topography at an angle α to the horizontal, and rotated at an angle ζ from the y -axis. Bold arrows indicate the wave 

group velocity vectors. ( k, l, m ) are the wave vector components, and I subscripts denote the incident wave while R subscripts denote the reflected wave. The incident wave 

group velocity vector is at an angle θ g to the horizontal, and an angle φI to the normal of the topographic plane. Based on the theory and schematic set forth in E82. 

The system of four equations in four unknowns can be combined 

to derive an equation for the vertical velocity w 

′ : 

∂ 2 

∂t 2 

(
∂ 2 

∂x 2 
+ 

∂ 2 

∂y 2 
+ 

∂ 2 

∂z 2 

)
w 

′ + N 

2 

(
∂ 2 

∂x 2 
+ 

∂ 2 

∂y 2 

)
w 

′ = 0 (2) 

Assuming a plane wave, decomposed into its incident and re- 

flected components (indicated by I and R subscripts, respectively), 

the vertical velocity can be expressed as: 

w 

′ = A I exp [ i (k I x + l I y + m I z − ωz)] 

+ A R exp [ i (k R x + l R y + m R z − ωz)] (3) 

where k, l and m are the onshore, alongshore and vertical com- 

ponents of the wavenumber, respectively, and ω is the wave fre- 

quency. A I and A R are the incident and reflected wave ampli- 

tudes. Alternatively, the wavenumber components can be written 

as (k, l, m ) = (K H cos (φ + ζ ) , K H sin (φ + ζ ) , m ) , where K H is the 

horizontal component of the wave number, φ is the horizontal an- 

gle between the normal of the topography and wave vector and ζ
is the angle of rotation of the inclined plane (again, following the 

E82 protocol and shown in Fig. 1 ). 

Substituting (3) into (2) and applying the bottom boundary con- 

dition of no normal flow at x = −( tan ζ ) y + ( cot α
cos ζ

) z, the equality in 

(2) is satisfied if and only if 

k I cos ζ + l I sin ζ + m I tan α = k R cos ζ + l R sin ζ + m R tan α (4) 

l I cos ζ − k I sin ζ = l R cos ζ − k R sin ζ (5) 

It should be noted that in the case of ζ = 0 , (4) and (5) simplifies 

to the case derived in E82 (i.e. with the setup of l I = l R ). 

We additionally know that the dispersion relation for internal 

waves can be expressed as 

tan 

2 θI = 

m 

2 
I 

k 2 
I 

+ l 2 
I 

= 

m 

2 
R 

k 2 
R 

+ l 2 
R 

= tan 

2 θR = 

N 

2 − ω 

2 

ω 

2 
(6) 

where the angle θ is the angle of the wave vector relative to the 

horizontal plane. It is related to the angle of the group velocity 

vector to the horizontal, θ g , in Fig. 1 by the relation θ = 

π
2 ± θg . 

Combining the conservation of wavenumber equations, (4) and (5) , 

as well as the dispersion relation, (6) , we can solve for the re- 

flected wavenumbers as a function of the incident wavenumber. 

Ignoring the solution of wave propagation through the bottom, we 

find: 

m R 

m I 

= −cos (α − θ ) 

cos (α + θ ) 
− sin (2 θ ) sin (2 α)( cos (φI ) − 1) 

2 cos (α − θ ) cos (α + θ ) 
(7) 

which is the same as derived in the non-rotated E82 case. Note 

that the subscripts are omitted for angle θ since the angle is 

conserved upon reflection. The horizontal components, k and l , 

however, differ from the E82 solution given that we have ro- 

tated the reference frame by angle ζ . The solution for each of 

these reflected wavenumbers yields a quadratic equation of the 

form a k,l x 
2 + b k,l x + c k,l = 0 , where x = (k R /k I ) , (l R /l I ) and the co- 

efficients, in standard notation, are expressed, respectively, as: 

a k = sec 2 (ζ ) 

b k = 2 tan (ζ ) tan (φI + ζ ) − 2 tan 

2 (ζ ) 

c k = tan 

2 (ζ ) + tan 

2 (φI + ζ ) − 2 tan (φI + ζ ) tan (ζ ) 

−
(

m 

2 
R 

m 

2 
I 

)
sec 2 (φI + ζ ) 

⎫ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎭ 

(8) 

and 

a l = csc 2 (ζ ) 

b l = 2 cot (ζ ) cot (φI + ζ ) − 2 cot 2 (ζ ) 

c l = cot 2 (ζ ) + cot 2 (φI + ζ ) − 2 cot (φI + ζ ) cot (ζ ) 

−
(

m 

2 
R 

m 

2 
I 

)
csc 2 (φI + ζ ) 

⎫ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎭ 

(9) 

Again, notice that the ratio of the reflected wavenumber to the 

incident wave number reduces exactly to the E82 solution in the 

limit of ζ = 0 , as it should. The Eqs. (7) –(9) constitute a one-to- 

one relationship between the reflected and incident wavenumbers 

solely as a function of the wave and topographic properties; the 

utility of this relationship will be fully realized in Section 3 in the 

construction of a linear ray tracing algorithm. It should be stressed 

that although we have developed this theory with the intent of 

using it for continental slope canyons, it is generalizable to any ar- 

bitrary topography, as all topography can be described in terms of 

a local tangent plane characterized by the two angles, α and ζ . 

For the problem of internal wave reflection, the relation be- 

tween the wave slope and the topographic slope, known as the 

criticality, determines the directionality of the reflected ray. The 

criticality or steepness, s , of the topography is calculated as 

s = 

| tan α| 
| tan θg | (10) 

where α is the local angle of inclination relative to the horizontal 

and θ g is the group velocity angle relative to the horizontal. When 

this relation is inserted into (10) , and simplified using (6) , we find 

that 

s = 

| tan α| 
| ω 

2 / (N 

2 − ω 

2 ) | (11) 
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When s < 1, the topography is referred to as subcritical, and rays 

undergo forward reflection. The converse is true for s > 1; that is 

the topography is termed supercritical and the rays reflect back- 

wards. In the case of the topographic slope exactly matching that 

of the wave, the topography is deemed critical (i.e. s = 1 ). Slope 

criticality is the main differentiator between the different classes of 

canyons we consider in this study, and we return to it in Section 4 . 

3. Ray tracing algorithm 

In order to understand the fundamental dynamics inside the 

idealized continental slope canyons or, more generally, wave re- 

flection off any topography, a ray tracing algorithm is developed. 

Rays propagate throughout the domain based upon their group ve- 

locity, c g = (∂ ω/∂ k, ∂ ω/∂ l, ∂ ω/∂ m ) where ω is the internal wave 

frequency, which satisfies the dispersion relation (6) . Thus, the in- 

ternal wave group velocity can be expressed as: 

c g = 

N 

K 

( sin 

2 (θ ) cos (η) , sin 

2 (θ ) sin (η) , − sin (θ ) cos (θ )) (12) 

where η is the horizontal angle, or mathematically, η = 

arctan (l/k ) , and K is defined as the resultant wavenumber (i.e. 

K 

2 = k 2 + l 2 + m 

2 ). If the stratification is constant (as it is in our 

idealized canyon study), the rays conserve wavenumber (and fre- 

quency) except during reflections. Since we do not consider Earth’s 

rotation in this study, c g has no f dependence, although f can be 

reinserted into the ray tracing algorithm by using the dispersion 

relation with rotation. As the wave numbers change upon reflec- 

tion, so too the group velocity changes. Eq. (12) is multiplied by 

the time step, dt , to convert the group velocity to a ray propaga- 

tion distance, i.e. x (t + dt) = x (t) + c g dt . 

In addition to needing values of α and ζ to evaluate the re- 

flected wave numbers (7), (8) and (9) , φI , the horizontal angle of 

the incoming ray relative to the horizontal normal line of the slope 

(see Fig. 1 ) is also required. This is the most time-consuming quan- 

tity to calculate since it depends on the orientation of the ray (i.e. 

quantity η) relative to the orientation of the slope (i.e. quantity ζ ). 

Given that the sign of φI is important, we define φI to be positive 

if the topography’s normal line is to the left of the incoming ray 

and negative if the topography’s normal line is to the right of the 

incoming ray (e.g. φI > 0 in Fig. 1 ). 

Care must also be taken in calculating angle η after reflection. 

While the relations of (8) and (9) yield reflected wave numbers, 

and thus a value of η, this is only one possible value of ηR (for 

reference, we define this value as η1 ). Specifically, the reflected 

value of η could be | η1 |, −| η1 | , (| η1 | − π/ 2) or (π/ 2 − | η1 | ) . We 

have developed a subroutine within the ray tracing algorithm to 

determine which value of η should be used. Namely, for every re- 

flection two of the four values of η will lead to the ray propagat- 

ing beneath topography. Given that this is unphysical, these two η
options, which can vary for each case of reflection, are discarded. 

The final condition in choosing the reflected η is that the sign of 

φI must be the opposite of φR ; that is, backward reflection is not 

allowed. The remaining value of η is then taken as ηR . 

Rays are allowed to exit through all lateral boundaries and re- 

flect back downwards from the sea surface. The wave numbers of 

each ray are diagnosed, as increases in the vertical wavenumber 

can lead to instability. The density of the rays is also tracked, as 

a high ray density, and thus high energy density, can also lead to 

instability. One property of the waves that we are not tracking is 

the phase. We are therefore not able to diagnose regions of con- 

structive or destructive interference. 

The ray tracing algorithm is illustrated for various continen- 

tal slope topographies: a vertical wall (with both normally- and 

obliquely-incident rays), a subcritical slope and a supercritical 

slope in Figs. 2 , 3 , 4 and 5 , respectively. For each case, only one 

ray is shown for clarity. 

Fig. 2. Ray tracing algorithm application for a single rave propagating into the do- 

main from the Western boundary, normal to topography, and reflecting off a vertical 

wall (i.e. α = 90 °). (a) 3-dimensional view of the ray propagation and reflection. (b) 

2-dimensional view of the ray propagation and reflection in the x –z plane. 

In our implementation of the ray tracing algorithm for conti- 

nental slope canyons, the wave is initialized at the Western bound- 

ary (at x = 0 ) in the form of approximately 20 0 0 rays, spread 

evenly over the y –z plane. For every initialization, there are both 

upward- and downward-going rays. Thus, we use our discrete ray 

tracing algorithm to accurately match the energy propagation of a 

continuous internal wave. The rays are tracing out the group ve- 

locity of the internal wave since we are interested in energy loss 

resulting from reflection, and tracing of phase is a secondary con- 

cern, and thus not included in the ray tracing algorithm. Although, 

for the purpose of our canyon study, the topography is idealized 

and known analytically, it is interpolated to a finer grid so that the 

ray tracing algorithm is generalizable to any input topography, such 

as that of an observed continental slope canyon. The ray tracing al- 

gorithm is also able to read bathymetry files that have nonuniform 

resolution and interpolate them onto an isotropic grid. 

All rays are initialized with Eastward group velocity, although 

this initial condition can be customized to any arbitrary value. 

When rays interact with topography, be it the seafloor, shelf, or 

canyon, the new wave number components are calculated accord- 

ing to the three relations of (7), (8) and (9) . The ray tracing al- 

gorithm calculates the point of reflection and does not allow the 

rays to propagate under the topography. Although it is known ex- 



R.H. Nazarian, S. Legg / Ocean Modelling 118 (2017) 1–15 5 

Fig. 3. Ray tracing algorithm application for a single rave propagating into the do- 

main from the Western boundary, oblique to topography, and reflecting off a verti- 

cal wall (i.e. α = 90 °). (a) 3-dimensional view of the ray propagation and reflection. 

(b) 2-dimensional view of the ray propagation and reflection in the x –z plane. (c) 

2-dimensional view of the ray propagation and reflection in the x –y plane. 

actly for our idealized topography, the angle of vertical inclina- 

tion, α, is calculated locally to make the algorithm as generalizable 

as possible. In its current form, ζ can be prescribed or calculated 

upon each reflection. Since the magnitude of ζ is constant for each 

canyon we consider in this study, we prescribe it for the canyons 

in this study since it reduces the ray tracing run time. 

Fig. 4. Ray tracing algorithm application for a single rave propagating into the do- 

main from the Western boundary, normal to topography, and reflecting off a sub- 

critical slope. (a) 3-dimensional view of the ray propagation and reflection. (b) 2- 

dimensional view of the ray propagation and reflection in the x –z plane. 

To quantify the potential for instability of the wave, we utilize 

the wave Froude number, canonically calculated as 

F r = 

U H 

| c p , H | (13) 

where U H is the maximum horizontal flow speed associated with 

the wave and c p, H is the horizontal phase speed and expressed as 

(c p,x , c p,y ) = 

ω 
k 2 + l 2 (k, l) . The Froude number indicates potential re- 

gions of instability if the ratio is greater than unity, or when the 

flow speed exceeds the phase speed. From the dispersion relation, 

(6) , the phase speed in the denominator of (13) scales like 

c p , H = 

√ (
ωk 

k 2 + l 2 

)2 

+ 

(
ωl 

k 2 + l 2 

)2 

= 

ω √ 

k 2 + l 2 
= 

√ 

N 

2 − ω 

2 

m 

∝ 

1 

m 

(14) 

where the last equality is derived from the dispersion relation, (6) . 

Therefore 

F r ∝ 

U H 

1 /m 

(15) 

The numerator of (13) can likewise be approximated. Assume that 

the wave fluxes some amount of energy along an infinite number 
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Fig. 5. Ray tracing algorithm application for a single rave propagating into the do- 

main from the Western boundary, normal to topography, and reflecting off a su- 

percritical slope. (a) 3-dimensional view of the ray propagation and reflection. (b) 

2-dimensional view of the ray propagation and reflection in the x –z plane. 

of rays, given by 

F = E × c g (16) 

where F is the energy flux per unit area, E is the energy density 

and c g is the group velocity. If we assume that the total wave is de- 

composed into an infinite number of rays, then (16) can be rewrit- 

ten in terms of individual rays as 

F = E 0 × RD A × c g (17) 

where RD A is the ray density per unit area, diagnosable from the 

ray tracing (with units of number of rays per unit area) and E 0 is 

the energy per a single ray (i.e. a constant). If (17) is integrated 

over all space to include all rays, it will converge exactly to (16) . 

Thus the energy density, E , can be expressed as 

E = E 0 × RD A (18) 

If we multiply both sides of (18) by some arbitrary unit area, we 

find that the energy scales like the ray density. Given that the wave 

energy is equipartitioned between kinetic energy and potential en- 

ergy, 

KE ∝ RD (19) 

where KE is the kinetic energy and RD is the ray density (with 

units of number of rays). Since the horizontal kinetic energy scales 

like U 

2 
H 
, (19) simplifies to 

U 

2 
H ∝ RD (20) 

and thus, we can plug this into (15) and estimate the Froude num- 

ber as 

F r ∝ 

√ 

RD 

1 /m 

(21) 

Therefore, the ratio of the reflected wave’s Froude number to the 

incoming wave’s Froude number can be taken exactly as 

F r 1 
F r 0 

= 

( √ 

RD 1 

RD 0 

) 

×
(

m 1 

m 0 

)
(22) 

Note that RD 0 is the number of rays initialized at the Western 

boundary evaluated at the same depth as RD 1 . Both RD 0 and RD 1 

have units of number of rays per grid box. Taking the Froude 

number for the gravest (lowest) baroclinic internal tide from Legg 

(2014) ( Fr 0 here, where F r 0 = 

U 0 π

H 0 

√ 

N 2 −ω 2 
), we can solve for the 

maximum final Froude number in any given grid cell: 

F r 1 ,max = 

( √ 

RD 1 

RD 0 

) ∣∣∣(m 1 

m 0 

)∣∣∣
max 

(
U 0 π

H 0 

√ 

N 

2 − ω 

2 

)
(23) 

where U 0 and H 0 are the wave velocity amplitude and ocean depth 

at the Western boundary, respectively. Thus, for every grid cell in 

the ray tracing algorithm, we take the relative ray density and 

maximum vertical wave number to calculate the maximum Froude 

number. It is worth noting that, for our setup, U 0 = 0 . 02 m/s and 

H 0 = 200 m, leading to an initial Froude number of F r 0 = 0 . 32 . 

Thus, the wave is stable and will not break on its own; all breaking 

is the result of scattering off topography. While ray tracing algo- 

rithms have been used before to understand internal wave reflec- 

tion ( Manders and Maas, 2004; Maas, 2005; Drijfhout and Maas, 

2007; Rabitti and Maas, 2013; 2014 ), the ray tracing algorithm that 

we develop is novel in that it uses the change in ray density and 

vertical wavenumber to estimate the maximum Froude number as 

a result of ray reflection. We present a synthesis plot of the ray 

tracing capabilities using an idealized continental slope canyon, the 

specific topography of interest in this study, after we introduce 

these canyons in Section 4 . 

4. Canyon setup 

While this theory can be tested on any arbitrary topography, we 

have developed it to gain an understanding of internal wave dy- 

namics in submarine canyons. Additionally, given that one of the 

variables the ray tracing algorithm uses to diagnose instability is 

ray density, canyons are an ideal testbed since they are one of the 

few topographies that can lead to changes in ray density due to 

3D wave focusing effects. To construct the V-shaped canyons, we 

take two symmetric inclined planes and join them at the head (see 

Fig. 1 ). The first type of canyon we construct is the near-critical 

slope canyon, such that the center of the canyon is of near-critical 

slope. For the near critical slope canyon the thalweg steepness, 

s thalweg , is 0.94, so the topographic slope is near-critical (recall that 

a steepness value of unity is considered critical) for our case of the 

M2-tidal frequency. This is constant for all canyons in the class, 

as the group velocity angle is dictated by the stratification and 

wave (tidal) frequency, both of which are held constant as well 

as αthalweg , which is also held constant. By construction, the side- 

walls for the near-critical slope canyon are near-critical to super- 

critical (i.e. α = αnear-critical → 90 ◦). A schematic of this type of 

canyon is shown in Fig. 6 a. Critical and near-critical slopes have 

been the topic of numerous studies as they are conducive to en- 

hanced mixing; upon reflection all wave rays are aligned alongs- 

lope. This high density of wave rays leads to a high energy density, 
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Fig. 6. Two classes of V-shaped canyons analyzed in this study. (a): near-critical 

slope canyon, (b): flat bottom canyon. Note that throughout our suite of experi- 

ments, angle ζ is varied identically for both class of canyons. Thus, the two differ- 

ent classes of V-shaped canyons are different in angle α only. The sidewalls of each 

canyon have isobaths, or lines of constant depth, drawn for clarity. 

and thus the potential for instability, wave breaking, and subse- 

quent mixing ( Ivey and Nokes, 1989 ). It is thus possible that such 

a canyon could lead to enhanced levels of mixing. 

The second class of V-shaped canyon constructed is a flat bot- 

tom canyon. In this case, the topography does not slope smoothly 

between the sea floor and continental shelf, as was the case for the 

near-critical slope canyon, but instead steps up at the V-boundary 

via a vertical wall. A schematic of this canyon can be found in 

Fig. 6 b. The motivation behind the design of the canyon is that it 

possesses the potential to act as a wave trap for sufficiently large ζ
( Maas et al., 1997 ). Note that both types of canyons have the same 

profile when viewed from the sea surface (i.e. in the x-y plane), 

but vary in their sidewall steepness (angle α) only. Throughout 

the suite of experiments, ζ is varied identically for both classes 

of canyons. For both classes of canyons, the canyon length, L , is 

held constant while the canyon mouth is altered to modulate ζ . 

Additionally, both classes of canyons have a maximum topographic 

height, H , that is only one-half of the total domain. Thus, we have 

established two differing values of α through the construction of 

these two types of V-shaped canyons, as well as a sweep of ζ , 

which is systematically varied for both cases. 

Table 1 

Summary of parameters of interest. 

α ζ ( °) H (m) L (m) ω 

2 (10 −8 s −2 ) N 

2 (10 −6 s −2 ) 

αnear −cr itical 22.8 100 744 1.99 1.00 

48.3 100 744 1.99 1.00 

52.3 100 744 1.99 1.00 

64.4 100 744 1.99 1.00 

83.2 100 744 1.99 1.00 

90 ° 22.8 100 744 1.99 1.00 

48.3 100 744 1.99 1.00 

64.4 100 744 1.99 1.00 

73.5 100 744 1.99 1.00 

73.5 150 744 1.99 1.00 

73.5 200 744 1.99 1.00 

73.5 100 1046.2 1.99 1.00 

73.5 100 1046.2 0.995 1.00 

83.2 100 744 1.99 1.00 

While the two classes of canyons are differentiated by their 

value of α, α for the near-critical slope canyons has some ζ - 

dependence. That is, based on the construction of the topography, 

tan α = 

tan αt 

cos ζ
(24) 

such that for small values of ζ , the slope of the sidewalls is ap- 

proximately the thalweg slope (i.e. tan α ≈ tan αt ). As ζ increases, 

the sidewall slope increases to be larger than the thalweg slope. In 

the limit of ζ → 90 °, the sidewall slope approaches vertical. There 

is thus a non-negligable ζ -dependence for the near-critical slope 

canyon sidewall steepness. This implies that the sidewall steepness 

for the near-critical slope canyons is near-critical to supercritical. 

It is thus preferable, and the approach of this paper, to differenti- 

ate canyons classes through their thalweg angle of inclination, αt , 

which is held fixed for each canyon class. 

To summarize, we have two classes of V-shaped canyons, that 

are distinguished only by their sidewall steepness, α. The first class 

of canyons has a thalweg steepness that is near-critical and so, 

by construction, near-critical to supercritical sidewalls. The second 

class of canyons has vertical walls, which are thus very supercrit- 

ical. The second parameter of interest is the canyon aspect ratio, 

ζ , which is varied systematically for both canyons. We modulate 

ζ by adjusting the canyon width only. Both canyons have a fixed 

height, H , of 100 m and a fixed length, L , of 744 m. See Fig. 6 for 

the geometry of the two canyon classes. In Fig. 6 , isobaths, or lines 

of constant depth, are overlaid on the sidewalls to make clear that 

the canyons vary in α. Parameters of interest, both topographic and 

those for the wave and ambient fluid, are listed in Table 1 , as well 

as their corresponding values for the submarine canyons consid- 

ered in this part of the study. 

While these canyons follow idealized V-shape profiles with two 

different classes of sidewall steepnesses, their general profile is 

rooted in reality. In a statistical analysis of the occurrence of sub- 

marine canyons, Harris and Whiteway (2011) separated global sub- 

marine canyons into differing classes based on canyon geometry. 

They find that canyons surrounding New Zealand and Western 

North America have very small mean thalweg slopes (3.8 and 4.3 °, 
respectively) and lie on active margins, which leads to steep side- 

walls. These observed canyons are very similar to our flat bottom 

canyon class. They also find canyons, such as surrounding India and 

Australia that have larger thalweg slopes (ranging from 1.1 to 20.9 °
and 0.8 to 23.7 °, respectively) which can be near-critical for cer- 

tain wave frequencies. They observe these canyons to be on passive 

margins, which is indicative of more gradual sidewall slopes, akin 

to our near-critical slope canyon class. Thus, while certain simpli- 

fications have been used in the development of our topography, 

both classes of canyons are similar to submarine canyons observed 
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Fig. 7. An example of the ray tracing algorithm for a flat bottom canyon with 

ζ = 64 . 4 ◦ . (a): 3-dimensional perspective , (b): 2-dimensional perspective in the x –y 

plane (i.e. downward looking). A large number of rays are initiated at the Western 

boundary, spanning the x –z plane, with both upward and downward going com- 

ponents (only one ray is shown here for clarity). Rays then propagate Eastward 

according to the dispersion relation and can scatter off topography. Here the ray 

reflects off the canyon sidewall and enters onto the continental slope obliquely. As 

before, x is aligned with longitude (West to East) and y is aligned with latitude 

(South to North). 

and there is the potential to apply the lessons learned in this ide- 

alized framework to real continental slope canyons. We will return 

to this in Part 2 of this study ( Nazarian and Legg, 2017 ). 

Now that we have defined our canyon classes, we present a 

schematic of internal wave reflection in flat bottom and near- 

critical slope canyons, similar to that presented for the cases of 

a vertical wall, subcritical slope and supercritical slope, in Figs. 7 

and 8 , respectively. Additionally, in Fig. 9 , we present all of the cal- 

culations that can be conducted using the ray tracing algorithm, 

outlined in Section 3 , for the case of a near critical slope canyon of 

moderate width. 

5. Results 

We now use the ray tracing algorithm to probe the parame- 

ter dependence of internal wave-driven instability in continental 

slope canyons. We start by considering the case of the flat bot- 

tom canyon and present individual ray trajectories and vertically- 

integrated relative increase in ray density for three different 

canyon aspect ratios in Fig. 10 . We do not consider increases to the 

vertical wavenumber here, as the vertical wavenumber does not 

change upon reflection off vertical walls (see Section 2 ). Fig. 10 il- 

Fig. 8. As in Fig. 7 , but now for the case of a near-critical slope canyon. 

lustrates a ζ -dependence on the pattern of vertically-integrated in- 

crease in ray density. 

For a relatively wide canyon, Fig. 10 a-i illustrates that rays only 

reflect, at most, one time within the canyon region (some rays 

propagate over the canyon undisturbed). Additionally, all of these 

rays are then reflected out of the canyon. From geometric op- 

tics, we know that this is true for all flat bottom canyons with 

ζ < 30 °. While the rays, and their associated energy, are able to 

exit the canyon without being trapped, the canyon does act to fo- 

cus them toward the center, as seen in the relative ray density plot 

in Fig. 10 a-ii. Since the vertical wavenumber cannot increase upon 

reflection, ray focusing is the only potential mechanism by which 

wave instability can be achieved in this framework. 

In Fig. 10 b, we consider a canyon of moderate width (i.e. ζ = 

48 . 3 ◦). Note that subsequent ray reflections inside the canyon are 

now possible. Again, from geometric optics, we know that at ζ = 

45 ◦ the second reflection must be further into the canyon. This 

is in contrast to the outward reflection of rays that characterizes 

the wide canyon in Fig. 10 a. The magnitude of relative ray density 

per grid box is slightly enhanced in this regime, compared to the 

first regime and the pattern of increased ray density is more evenly 

distributed throughout the canyon region, leading to a higher con- 

centration of ray energy. Additionally, note that this setup leads to 

wings of increased ray density extending outside the canyon re- 

gion, a result of ray scattering and focusing. This can be an addi- 

tional source for instability extending away from the topography, 

as the ray density can also be elevated, and thus lead to mixing, 

on the shelf. 
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Fig. 9. Various diagnostics produced by the ray tracing algorithm for the case of a near-critical slope canyon with ζ = 52.3 °. Six hundred individual rays are used here for 

illustration, and thus individual rays are not distinguishable. (a) Ray tracing with 600 individual rays. (b-i) Relative increase in ray density, integrated in the vertical, and (b-ii) 

ray density in the x - z plane along the canyon center. (c-i and d-i) Relative increase in vertical wavenumber and maximum Froude number in the x - y plane at mid-depth, 

and (c-ii and d-ii) in the x - z plane along the canyon center, respectively. Notice here that Fr > 1 at various locations in the canyon, indicating potential regions of instability. 

Increased Froude number is also present for a given depth, indicating that instability can also occur on the shelf as a result of canyon processes. Given that the incoming 

wave has Fr < 1, this increase in Fr can be attributed to canyon effects. 
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Fig. 10. Ray tracing (i) and ray density (ii) conducted for the case of the flat bottom canyon. The panels, from top to bottom, represent the cases of relatively large (a), 

moderate (b) and small (c) canyon width, respectively. The ray tracing plots only show a limited number of rays to illustrate the reflection patterns, while the ray density 

plots are the result of a large number of both upward- and downward-going rays spanning all of y and z , initiated at the Western boundary. Note that panel (c) is zoomed 

in due to the canyon being very narrow. 

Fig. 10 c illustrates the case of a narrow flat bottom canyon. For 

this instance, it is possible for rays entering the canyon region to 

have multiple reflections and remain trapped in the canyon, lead- 

ing to high ray/energy density as in canyons of more moderate 

width (i.e. Fig. 10 b). Yet, the ray tracing output illustrates that very 

few rays are able to enter the canyon region due to the decreasing 

mouth width corresponding to increasing ζ . This is potentially a 

mitigating factor in how much energy can be concentrated in flat 

bottom canyons for large values of ζ . 

Despite having a different thalweg slope, αt , we find that the 

near-critical slope canyon case behaves similarly to the case of 

the flat bottom canyon ( Figs. 11 a and 12 a). The main distinction 

between the near-critical slope canyon and flat bottom canyon is 

that the sidewalls are not vertical in the case of the near-critical 

slope canyon, which allows a change/redistribution of wavenum- 

ber upon reflection, as outlined in Section 2 . The main implication 

of this physics is that, for relatively wide canyons experiencing, at 

most, one reflection ( ζ < 30 °), the rays are still scattered out of the 

canyon upon reflection, but onto the shelf. This is in contrast to 

the flat bottom canyon case, in which rays are scattered back out 

towards the abyss (see Fig. 10 a). 

We next consider the case of a slightly narrower canyon, again 

with ζ = 48 . 3 ◦ in Figs. 11 b and 12 b. For the case of the near-critical 

slope canyon, the transition point for outward scattering and sec- 

ondary reflections no longer occurs at ζ = 30 ◦ due to the non- 

vertical sidewalls. Instead, the transition point is shifted towards 
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Fig. 11. Ray tracing (i) and ray density (ii) conducted for the case of the near-critical slope canyon. The panels, from top to bottom, represent the cases of relatively large (a), 

moderate (b) and small (c) canyon width, respectively. The ray tracing plots only show a limited number of rays to illustrate the reflection patterns, while the ray density 

plots are the result of a large number of both upward- and downward-going rays spanning all of y and z , initiated at the Western boundary. Note that panel (c) is zoomed 

in due to the canyon being very narrow. 

higher ζ . This is a direct implication of the dispersion relation and 

the redistribution of wavenumber components upon reflection off

the topography. At this higher transition point, all rays are scat- 

tered further into the canyon. This threshold is derived from Eq. 

(8) . Specifically, rays begin to be reflected into the canyon at the 

transition of k R = 0 , and thus the quadratic equation with variable 

k R / k I simplifies to 

tan 

2 (ζ ) + tan 

2 (φI + ζ ) − 2 tan (φI + ζ ) tan (ζ ) 

−
(

m 

2 
R 

m 

2 
I 

)
sec 2 (φI + ζ ) = 0 (25) 

We know that for the initial reflection, φI can either be ± ζ based 

on which side of the canyon the ray reflects off. Both positive and 

negative values of φI yield the same solution so, for ease, we use 

φI = −ζ which renders (25) 

tan 

2 (ζ ) = 

(
m R 

m I 

)2 

(26) 

where the ratio of the vertical numbers is given in (7) . This yields a 

transitional ζ of 45.3 °, which is confirmed by the ray tracing algo- 

rithm. While the point of transition is shifted, the same underlying 

physics is present: rays are now reflected back into the canyon re- 

gion where they can further reflect and scatter. As the number of 

reflections increases, so too does the likelihood of increasing verti- 

cal wavenumber and, potentially, breaking. There also continue to 

be wings of enhanced ray density extending from the canyon re- 
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Fig. 12. As in Fig. 11 , except now the maximum ratio of reflected vertical wave number to incident vertical wave number is plotted along the canyon center, as the vertical 

wave number can change within a near-critical slope canyon. 

gion, another result of the canyon ray scattering. Additionally, the 

increase in vertical wave number, another precursor for potential 

instability, is more pronounced and encompasses a larger spatial 

area, for this higher ζ canyon (see Fig. 12 b). 

For large values of ζ , Figs. 11 c and 12 c suggest that narrow 

near-critical slope canyons show a significantly smaller region of 

wave focusing and increased vertical wavenumber than narrow flat 

bottom canyons and thus, potentially less mixing. This is due to 

the fact that the ray density in the near-critical slope canyons de- 

creases much faster as a function of ζ than that of the flat bot- 

tom canyon, which can be seen in a comparison of Figs. 10 and 

11 . Although the ray density decreases rapidly and the envelope 

of increased vertical wavenumber has shrunk, the magnitude of 

the increase in vertical wavenumber increases to a greater extent 

compared to near-critical slope canyons of moderate ζ , thus po- 

tentially mitigating some of the effects of decreased wave focus- 

ing. These three near-critical slope canyon cases are summarized 

in Figs. 11 and 12 in a similar fashion to Fig. 10 . 

So far we have only used the ray tracing to consider variations 

in two topographic parameters: the canyon aspect ratio (i.e. ζ ) and 

the thawleg slope (i.e. αt ). Given the relative speed of the ray trac- 

ing algorithm versus a fully-nonlinear numerical model, we can 

also use the ray tracing algorithm to probe the sensitivity of our 

results to the topographic quantities that we have hitherto held 

constant: canyon height, H , and canyon length, L . To complete this 

test, we conduct the ray tracing for the case of the flat bottom 

canyon with ζ = 73 . 3 ◦, as the ray tracing algorithm suggests this 

is where the ray density for flat bottom canyons is at a maximum 

and we are interested in how changes to these parameters can 

make the canyon more or less effective at leading to wave insta- 

bility. We only consider the flat bottom canyon here, as changing 

the height of the near-critical slope canyon implies an increase in 

the canyon length, and we want to separate the height and length 

dependence. 

First, we investigate the implication of increasing the canyon 

height, the results of which are shown in Fig. 13 . As the canyon 

height increases from the default value of 100 m ( Fig. 13 a) to the 

full depth of the domain, 200 m (i.e. from sea floor to sea surface, 

Fig. 13 c), the vertically-integrated ray density increases. Thus, taller 

canyons are more efficient at focusing and, potentially, trapping in- 

ternal wave energy. Given that the only mechanism for instability 

in the flat bottom canyon is increased ray density, we would ex- 

pect this increase in canyon height to lead to an increased poten- 

tial for instability. Qualitatively, Fig. 13 suggests that the ray density 

within the canyon and outside the canyon mouth, and therefore 

the instability within the canyon and outside the canyon mouth, 

increases linearly with increasing canyon height. An appropriate 

scaling for the height-dependence of the instability and potential 

for energy loss in canyons may thus be estimated as H / D where 

H is the height of the canyon and D is the full domain depth. In 

the case of Fig. 13 c, this ratio is equal to unity. Perhaps intuitive, 

this scaling is important when transferring this understanding to 

fully-nonlinear GCMs where canyon height is one of the important 

differentiating factors between canyons. Also note that this scaling 

is valid for canyons with critical and supercritical side slopes, but 

not for subcritical side slopes which lead to forward wave scatter- 

ing and propagation onto the shelf. 

We similarly test the sensitivity of wave focusing in canyons to 

the length of the topography. We again consider the case of the 

ζ = 73 . 5 ◦ flat bottom canyon and now consider the Froude num- 

ber as it provides more intuition when considering slices in the 

x –z plane than does the ray density at each depth. The Froude 

number from the default (i.e. H = 100 m) ray tracing calculation 

is shown in Fig. 14 a. The default length of the canyon for all simu- 
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Fig. 13. Vertically-integrated relative increase in ray density for a flat bottom canyon with height 100 m (a), 150 m (b) and 200 m (c). As the canyon height increases, canyons 

become more efficient at focusing and, potentially, trapping internal wave energy. 

lations was 744 m (see Table 1 ). We elongate the canyon to a length 

of 1046.2 m (roughly 1.4 times longer than the default canyon), as 

well as increase the canyon width, so that ζ remains fixed at 73.5 °. 
The result is shown in Fig. 14 b. There is a marked increase in the 

spatial extent of Fr > 1 for the longer canyon. In the default case, 

the horizontal extent of the region of potential instability was ap- 

proximately 400 m, while for the elongated canyon the region of 

potential instability is approximately 600 m (this approximation of 

a 50% increase in the extent of instability is in approximate agree- 

ment with the factor of 40% increase in the canyon length). The 

vertical extent of instability remains relatively constant. There is 

also an increase in the magnitude of the Froude number in the 

potentially unstable regions. Thus, this sensitivity test suggests that 

the potential energy lost from the internal wave due to the canyon 

may scale like parameter L , the length of the canyon. 

Note, however, that it is not the absolute length of the canyon 

that is important, but the canyon length relative to the wavelength 

of the internal tide. Between Fig. 14 a and b, the wavelength is fixed 

for the gravest baroclinic internal tide, but if the wave were of 

a different frequency, and thus a different wavelength, we may 

expect more or less of the wave to interact with and reflect off

the canyon topography. This hypothesis is tested in Fig. 14 c. As the 

wavelength is doubled, the spatial extent of the potential instabil- 

ity decreases by approximately a factor of one half. The magnitude 

of the Froude number in the regions of potential instability is also 

reduced. This suggests that the energy loss in the canyon region 
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Fig. 14. Maximum Froude number from the ray tracing algorithm, taken along the 

center of a flat bottom canyon in the second regime. (a) Flat bottom canyon of the 

default length of 744 m and (b) flat bottom canyon of the new length of 1046.2 m 

and (c) flat bottom canyon of the new length of 1046.2 m with double the frequency 

of that in (a) and (b). For all canyons, ζ remains constant at 73.5 °. Note the varia- 

tion in the colorbar now for Fr > 1. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 

may thus scale like L / λx where λx is the horizontal component 

of the wavelength aligned with the canyon axis. We hypothesize 

that this scaling is likewise appropriate for the near-critical slope 

canyon but we do not test that here, as we can only differentiate 

the effects of changing canyon height and length by considering 

the case of vertical sidewalls. 

6. Discussion and conclusion 

There have been extensive numerical modeling studies regard- 

ing internal tide energy loss at a variety of topographic features, 

yet submarine canyons, specifically canyons on the continental 

slope, have not received sufficient attention. As a first attempt to 

study the underlying physical processes and understand the to- 

pographic parameters that govern the strength of canyon-induced 

mixing, we have developed a ray tracing algorithm from the lin- 

ear theory to be used on two classes of idealized continental slope 

canyons. This ray tracing algorithm tracks quantities such as ray 

density and wave number. From these quantities, we have devel- 

oped an estimate of the Froude number, which is a measure of the 

likelihood of instability and mixing. This is the first time that a 

ray tracing algorithm has been used to estimate the Froude num- 

ber and the likelihood of instability resulting from internal wave 

reflection off topography. 

In the construction of this ray tracing algorithm from the linear 

theory, we have not made any assumptions that are canyon spe- 

cific; we have simply extended the internal wave reflection the- 

ory to some 3D rotated, inclined plane (with parameters α and 

ζ ). This algorithm could therefore be applied to wave reflection 

off any arbitrary topography, since the patch of topography that 

a ray reflects off can, on some infinitesimal level, be considered a 

3D rotated, inclined plane. The ray tracing may, in the future, be 

used as a precursor to a GCM or observational campaign, to iden- 

tify whether instabilities occur for given topography and where 

those instabilities occur. The ray tracing algorithm does not require 

significant computational power or time and may thus be a pow- 

erful tool in considering whether GCM-scale simulations or field 

programs should be conducted, as well as the scope of such simu- 

lations or observations. 

Here we have provided numerous examples of the utility of 

the ray tracing algorithm for continental slope canyons, in addi- 

tion to showing its generalizability for other topographies. Perhaps 

contrary to intuition, we have observed that canyons of interme- 

diate aspect ratio are most efficient at increasing ray, and thus 

energy, density, which can thereby lead to mixing. Although the 

threshold for subsequent reflections in the canyon is different be- 

tween the flat bottom ( ζ = 30 ◦) and the near-critical slope canyons 

( ζ = 45 . 3 ◦), both canyon classes exhibit an increase in ray den- 

sity for moderate width canyons (i.e. for canyons with L ∝ W , where 

W is the canyon width). Additionally, for the case of near-critical 

slope canyons, certain values of ζ can lead to a 15% or larger in- 

crease in vertical wavenumber, and thus a decrease in the verti- 

cal length scale, functioning as another potential catalyst for insta- 

bility. We have also tested the sensitivity of our results based on 

the default values of canyon height and length. Informed by the 

ray tracing algorithm for the case of a flat bottom canyon with 

some existing instability present in the default case, we conducted 

further experiments with slightly modified values of H, L , and λx . 

Based on the changes to the spatial scales of potential instability, 

we proposed that canyon instability and energy loss can be scaled 

by H / D and L / λx . This is one direct way that the ray tracing can 

inform parameterizations for tidally-driven mixing in continental 

slope canyons in GCMs. 

So far, we have not offered any test of robustness that the ray 

tracing algorithm correctly predicts regions of instability in conti- 

nental slope canyons. Our goal in this paper is to document the 

formation of a ray tracing approach and employ it to obtain a 

first-order understanding of internal wave scattering dynamics in 

continental slope canyons. In Part 2 of this study ( Nazarian and 

Legg, 2017 ), we compare our ray tracing results with calculations 

of instability diagnosed from a fully-nonlinear GCM as a means 

of testing the ray tracing’s robustness. Additionally, we combine 

the utility of the ray tracing algorithm and the utility of a GCM 
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to further explore the idealized parameter space that we have de- 

veloped here. Used in tandem, these two approaches allow us to 

gain a deeper understanding of the effects of canyon sidewall slope 

and canyon aspect ratio in regulating internal wave-driven mixing 

within and around canyons. 
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