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backgrounds, which may be more advantageous than the 
instructor’s explanation.9,10,12,13 Third, the demonstration is 
conducted, with student participation as necessary. Fourth, 
and equally as important as the second step, students revisit 
their hypotheses and resolve any misconceptions.9,10,12,13 

Again, working in groups is beneficial as students may use 
their shared collective experiences to reconcile their under-
standing in a way that the instructor is unable to do. Studies 
have shown that if this step is skipped, students will further 
solidify their misconceptions.12,21,22

Over the past several years, I have implemented the tra-
ditional ICD paradigm into my year-long General Physics 
course sequence and have made several changes. The revised 
paradigm that I present is based on observations from the 
class, particularly based on the strengths of the current demo-
graphic of students (Generation Z). One modification that I 
have made to the canonical ICD paradigm is in the selection 
process for individual demonstrations. With at least one ICD 
per class and three class meetings per week, I aim to include 
at least one simple yet flashy demonstration per week. While 
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Interactive classroom demonstrations (ICDs) are used ex-
tensively in physics, and prior studies indicate that, when 
conducted under certain conditions, they lead to apprecia-

ble increases in student gains and retention.1-12 The literature 
suggests that the ICD recipe for maximizing student gain is to 
i) introduce the physical theory that will be demonstrated, ii) 
describe the demonstration and prompt students to record a 
prediction for what will happen, iii) conduct the demonstra-
tion, and iv) return to the prediction for students to reconcile 
their hypotheses.1,4,6,8-10,12,13 Here, I propose two interrelated 
updates to leverage the particular strengths of Generation Z 
students currently enrolled in introductory physics courses14-17 

as well as to address potential pitfalls in the canonical ICD 
recipe8-10,13,18-22: the inclusion of simple, yet flashy demonstra-
tions, and the integration of social media to disseminate and 
further engage with the results.

Introductory college physics courses bring together students 
with a variety of skills, experiences, and preferred learning strat-
egies.23 For many students majoring in the physical sciences and 
engineering, it’s their first college-level science class and they 
are adjusting to the rigors and pace of a college physics course. 
These students typically join advanced life science students 
who traditionally have more experience in college-level science 
courses but more apprehension regarding the mathematical 
formalism presented in introductory college physics. Interac-
tive classroom demonstrations have been shown to be useful in 
teaching students from all backgrounds in introductory physics 
courses since they provide students the opportunity to build 
intuition about a topic before attempting rigorous problems.1,5,6 
In addition to helping students to visualize new topics and build 
intuition, there are two additional, important purposes for con-
ducting ICDs. First, ICDs help to build community among the 
students through the discussion of hypotheses (described in the 
next paragraph).10,16,24,25 Second, it has been suggested that the 
use of ICDs may narrow the gender gap in introductory courses, 
which may increase the retention of women and groups his-
torically underrepresented in physics.26 Therefore, ICDs serve 
several purposes and remain a fixture in introductory college 
physics courses.

The canonical paradigm for ICDs has been developed over 
the past several decades and has four essential elements (see 
Fig. 1).5,6,8,10,12 First, the instructor introduces the topic and the 
theory, typically using the full mathematical formalism, which 
the subsequent ICD will help to clarify. Second, the ICD is de-
scribed by the instructor and put into the framework of cause 
and effect. In other words, based on the theory that the students 
just learned, they hypothesize what will happen if the instructor 
does a specific action. This step first occurs individually and, 
after students have individual hypotheses, students share their 
hypotheses in groups (using active learning techniques such 
as think-pair-share). This step reinforces the educational gain, 
as students are able to discuss it together using their collective 

Fig. 1. Canonical paradigm for ICDs based on the physics 
education literature.

Fig. 2. Proposed ICD paradigm. Note that the primary modifi-
cations are in the third step (choosing which ICD to conduct) 
and the addition of the fifth step, which is the dissemination of 
results via social media.
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sizes suggest social media alone may positively impact studen-
tengagement35-39 and, potentially, grades.38

To illustrate this modified ICD paradigm, I consider an 
ICD used for conservation of momentum. While students 
typically associate conservation of momentum with collisions, 
I have observed that they are less likely to apply this concept to 
explosions, for which momentum is still conserved. In order 
to address this misunderstanding, I have used a modified ver-
sion of the rocket demonstration that has been used in many 
introductory physics classrooms. First, ethanol is vaporized 
in a gallon-sized plastic bottle. After a few minutes, the cap 
is removed and the bottle is placed on its side on the ground 
(conducted outside). A flame is then held at the mouth of the 
bottle, creating the required catalyst to force the air out of the 
opening and propel the bottle in the opposite direction (see
Fig. 3).

Before conducting this demonstration, I explain to stu-
dents that a bottle (with given mass and volume) is filled with
air (with given density). Then, an explosion causes the air to 
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Fig. 3. Snapshots of rocket ICD for conservation 
of momentum. In this ICD, students make a qual-
itative hypothesis as well as conduct the corre-
sponding calculation.

canonical, more pedestrian  demonstrations are still used 
and build linearly upon each other as has been suggested in 
the literature,1,2,6,9-11,13 the special class of simple and flashy 
demonstrations serve two  pedagogical purposes: i) to clearly 
illustrate the underlying  physics (using simple demonstra-
tions has been shown in the literature to be essential for ed-
ucational gains13) and ii) to engage the students.1,5,9,24 With 
the prevalence of social media, students have become less 
invested in traditional and pedestrian demonstrations—they 
are instead actively searching for moments that are unique 
and shareable.27 By having flashy demonstrations, students 
may become drawn in and invested in the demonstration.14-16 
Importantly, the use of flashy demonstrations is not to provide 
entertainment for the students; such an approach has been 
shown to provide limited gains in student learning.9,13 The 
guiding principle  in selecting demonstrations is providing 
a simple, large-scale  demonstration without any caveats, 
that elegantly portrays  the physics being taught. The flashy 
aspect is a vehicle by which the instructor simply shows the 
underlying physical principles. Consistent with the literature, 
the ICDs that I conduct  with this revised paradigm are a mix 
of qualitative (students  provide their hypotheses) and quan-
titative (students conduct a calculation to accompany their 
hypotheses).7 

Relatedly, the second modification that I have made to the 
canonical ICD framework is the inclusion of students sharing 
demonstration images, videos, and, most importantly, results 
via social media. While the dissemination of results may seem 
second nature to established scientists, this is a novel idea to 
students.8,20 Encouraging students to share footage of ICDs  
on social media serves several purposes. The first purpose 
is  to provide students with yet another opportunity to return 
to and examine their original hypotheses. Students are very  
conscious of what they post to their social media, and the  
posting of these demos encourages students to reaffirm the 
physics they observed. The second purpose of this sharing is 
to encourage students to spend more time engaging with the 
material. Regardless of the social media platform, posts are 
seldom left without follow-up discussion, and such discussion 
encourages students to spend more time outside of class en-
gaging with the material, continually reinforcing the theory 
underlying the ICD. This mode of commenting on their social 
media post provides an opportunity to qualitatively describe 
the physics that, when paired with the numeric problem 
sets, guides them in achieving a holistic study of the course 
material (see Fig. 2 for the revised ICD paradigm). Using the 
parlance of educational psychology, this second modification 
to the canonical ICD framework is an exercise in elaborative 
learning (describing the demonstration as well as engaging in 
comments and questions about the demonstration on social 
media) and the testing effect (revisiting and engaging with the 
material over an extended period of time by commenting on 
and answering questions about the demo on social media), 
both of which have been shown in the literature to increase 
student gains.28-34 Although the use of social media in the 
physics classroom has been limited, preliminary observations 
and studies across high school and college classes of varying 



While this paradigm has been refined over the past three
years in the year-long General Physics course sequence at a
primarily undergraduate institution, the feedback used to
gauge the success of this paradigm is qualitative. Specifically,
student feedback in the form of individual conversations,
end-of-semester confidential student evaluations, and assess-
ments of my teaching by faculty colleagues have all suggested
this paradigm i) increases student engagement, ii) increases
students’ perceived investment in learning the course materi-
al, and iii) increases students’ perceived gains in the course.
These forms of assessment (student evaluations, in particular)
have been shown to have some bias,40 and a follow-up study
quantitatively assessing these three perceived increases due
to the pedagogy is planned, both in the context of introducto-
ry physics as well as another introductory science course.
In the interim, the feedback received by students and other
educators suggests that this revised ICD paradigm may be
worth pursuing in introductory physics courses, particularly
as physics faculty look to increase student participation in the
hybrid landscape and champion equity in the classroom.
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