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predicting protein-ligand 
interactions based on bow-
pharmacological space and 
Bayesian additive regression trees
Li Li1,2,3, Ching Chiek Koh  4,5, Daniel Reker 6,7,8, J.B. Brown9, Haishuai Wang10,11, 
Nicholas Keone Lee 4,12, Hien-haw Liow13, Hao Dai  1,14, Huai-Meng Fan1,  
Luonan Chen14,15 & Dong-Qing Wei  1

Identifying potential protein-ligand interactions is central to the field of drug discovery as it facilitates 
the identification of potential novel drug leads, contributes to advancement from hits to leads, predicts 
potential off-target explanations for side effects of approved drugs or candidates, as well as de-orphans 
phenotypic hits. For the rapid identification of protein-ligand interactions, we here present a novel 
chemogenomics algorithm for the prediction of protein-ligand interactions using a new machine 
learning approach and novel class of descriptor. The algorithm applies Bayesian Additive Regression 
Trees (BART) on a newly proposed proteochemical space, termed the bow-pharmacological space. 
The space spans three distinctive sub-spaces that cover the protein space, the ligand space, and the 
interaction space. Thereby, the model extends the scope of classical target prediction or chemogenomic 
modelling that relies on one or two of these subspaces. Our model demonstrated excellent prediction 
power, reaching accuracies of up to 94.5–98.4% when evaluated on four human target datasets 
constituting enzymes, nuclear receptors, ion channels, and G-protein-coupled receptors . BART 
provided a reliable probabilistic description of the likelihood of interaction between proteins and 
ligands, which can be used in the prioritization of assays to be performed in both discovery and vigilance 
phases of small molecule development.

Exploring protein-ligand interactions is essential to drug discovery and chemical biology in navigating the space 
of small molecules and their perturbations on biological networks. Such interactions are essential to developing 
novel drug leads, predicting side-effects of approved drugs and candidates, and de-orphaning phenotypic hits. 
Therefore, the accurate and extensive validation of protein-ligand interactions is central to drug development and 
disease treatment. Experimentally determining and analysing protein-ligand interactions can be challenging1,2, 
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often involving complex pull-down experiments and orthogonal validation assays. Therefore, multiple efforts 
have been dedicated to developing rapid computational strategies to predict protein-ligand interactions for pri-
oritizing experiments and streamlining the experimental deconvolution of the interaction space. For example, 
docking simulations, in which the 3D-structure of the target is used to evaluate how well individual candidate lig-
ands bind to a structure, have been productively applied to identify novel interactions between clinically relevant 
targets and small molecules3,4. Appreciably, docking simulations are unfeasible when 3D structures of targets (e.g., 
those derived from crystallization and X-ray diffraction experiments) are not available, as exemplified by many 
G protein-coupled receptors (GPCRs), which are membrane-spanning proteins that are inherently difficult to 
crystallize. Conversely, ligand-based methods (e.g., fingerprint similarity searching, pharmacophore models, and 
machine learning approaches) are increasingly applied in research and development for the prediction of on- and 
off-target interactions, but often require large amounts of available ligand data to achieve the desired predictive 
accuracy. Another widely used computational strategy is text mining, which uses databases of scientific literature 
such as PubMed5. Text mining relies on keyword searching and is limited in its capability to detect novel bindings. 
The process can be further complicated by the redundancy of compound or protein names in the literature6.

Recently, to circumvent the shortcomings of the ligand- and target-based methods and to benefit from all 
available information, computational chemogenomics (or proteochemometric modelling) has emerged as an 
active field of predictive modelling. Here, the study of protein-ligand interactions simultaneously combines the 
protein target and ligand information with machine learning approaches to provide valuable insights into the 
interaction space. For example, several methods exist that are capable of predicting target protein families and 
binding sites based on the known structures of a set of ligands7–10. However, with scant information about the 
actual proteins, predicted interactions are, at best, only between the known ligands and different protein families. 
Some approaches, which are target-centric, make full use of the protein features, but fail to predict interactions 
of orphan ligands as the latter have no known links to any proteins11. Several methods have been proposed to  
consider both the protein sequences and ligand chemical structures simultaneously in prediction12,13,42.

We hypothesised that chemogenomic modelling could profit from including not only information on the 
ligand and protein similarity but also explicitly on the pharmacological interaction space and hence the relation-
ship between the ligands and the proteins (Fig. 1a). The combined information is composed of three sub-spaces, 
the shape of which resembles a bow tie, hence the name bow-pharmacological space. It covers a protein space that 
encodes protein sequence features, a ligand space that contains the fingerprints of chemical compounds, and an 
interaction space, coded by known interactions that connect the protein and ligand. Furthermore, we describe 
a novel prediction model by applying Bayesian Additive Regression Trees (BART) and other machine learning 
methods on these combined features from protein, ligand, and interaction information. Feature selection as well 
as subsampling experiments highlighted the utility of all the available descriptor subspaces and hence of the 
bow-pharmacological space (BOW space) newly developed here. Compared to other classical machine learning 
algorithms, the BART algorithm outperformed all tested methods and demonstrated good prediction power 
(94–99% accuracy on different datasets). Furthermore, BART can provide a quantitative description of the likeli-
hood of predicted interactions and thereby provide an important measure of predictive uncertainty. In addition 
to retrospective analysis, we also highlight one exemplary prediction for a novel ligand of the KIF11 protein that 
was successfully validated using a docking simulation and subsequently confirmed by a crystallography study 
executed by an independent research group.

Results
Prediction based on bow-pharmacological space and BART. To predict the likelihood of protein-li-
gand interactions, information of both the known interactions and the non-interactions (positive and negative 
data) are required to build the training and testing datasets. For each protein-ligand pair (interaction or non-in-
teraction), we coded 439 features in the bow-pharmacological space (Fig. 1). Based on these features, a statistical 
model was built to predict whether there was an interaction between a protein and a ligand. Due to the complex-
ity of multiple possible interactions between proteins and ligands, we applied the Bayesian Additive Regression 
Trees (BART) to build the prediction model. BART is a Bayesian “sum-of-trees” model in which each tree is 
constrained by a regularized prior to be a weak learner, and fitting and inference are accomplished via an iterative 
Bayesian backfitting MCMC algorithm that generates samples from a posterior. BART enables full posterior infer-
ence including point and interval estimates of the unknown regression function as well as the marginal effects of 
potential predictors14 (see Methods).

To benchmark our approach against work by other researchers, we constructed our prediction models on pub-
lished datasets by Yamanishi et al.12, Bleakley et al.13, Cao et al.15, Jacob et al.16 and He et al.17. When these datasets 
were combined, the numbers of enzymes, ion channels, GPCRs, and nuclear receptors were 664, 204, 95, and 26, 
respectively; the numbers of known drugs were 445, 210, 223, and 54, respectively; and the numbers of known 
interactions were 2926, 1476, 635, and 90, respectively.

The robustness of our model was assessed by a ten-fold cross-validation. We evaluated our model perfor-
mances for sensitivity, specificity, accuracy, average receiver operating characteristic (ROC) curve, and the area 
under the curve (AUC) (see Methods). The accuracy of our model was 94.5%, 96.7%, 98.4%, and 95.6% for all 
four groups of proteins (enzymes, ion channels, GPCRs, and nuclear receptors). On the same dataset, our method 
performed better than other existing prediction methods that are based on chemical and genomic spaces12, pro-
tein sequence and drug topological structures15, a chemogenomics approach16, as well as functional group and 
biological features17 (Fig. 2).

To directly compare the performance of BART with other established machine learning models, we used 
our training data (see Methods) to perform cross-validation experiments using random forest, support-vector 
machines (SVM), decision trees, and logistic regression. All models showed good performance (AUC > 0.9) when 
provided with the BOW space, while BART still showed superior performance (Fig. 3). Not surprisingly, the 
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random forest–with arguably the most similar prediction architecture–showed the most similar performance, 
being outperformed by BART only in sensitivity. Simpler models such as decision trees showed lower perfor-
mance on all applied measures. Interestingly, the well-established SVM showed the lowest accuracy, which was 
due to its low sensitivity but high specificity. Random forest, on the other hand, showed high sensitivity and low 
specificity. BART excelled in both measures and highlights the ability of the method to correctly classify both 
positive and negative data.

Features in bow-pharmacological space. It is unknown whether all 439 features in our bow-pharmacological  
space contribute to the prediction and which features are more predictive than the others. Hence, we performed 
feature selection on the training data of the entire dataset (enzyme, ion channel, GPCR, and nuclear recep-
tor) using Boruta, an algorithm that determines the relevance by using a wrapper approach built around a ran-
dom forest classifier that compares real features to random probes18. Boruta divides features into three categories: 
“important”, “tentative”, and “unimportant.” First, we collected “important” features to form a feature dataset called 
“strictly selected features.” Next, we selected the “important” and “tentative” features to make up the “selected fea-
tures.” The numbers of feature sets for individual models were summarized in Fig. 4. In general, “strictly selected 
features” contained almost half of all of the features, and “selected features” were close to two-thirds of all features. 
Importantly, we noted that every subspace (ligand, protein, and bow-interaction space) had conserved features, 
which highlights that the predictive accuracy depends on all descriptor subspaces. Moreover, this implies that all 
subspaces of the bow-pharmacological space contained relevant and non-redundant information (Fig. 4c). To test 

Figure 1. Bow-pharmacological space. (a) The bow-pharmacological space spans three subspaces: protein 
space in blue, ligand space in green, and interaction space in pink. Filled circles represent proteins and triangles 
represent ligands. Protein–ligand pairs of known interactions from published databases are denoted as “known” 
whereas those not curated in the databases are denoted as “new.” Solid lines indicate known interactions in the 
interaction space while dashed lines illustrate three kinds of unknown interactions (① unknown protein with 
known ligand, ② known protein with unknown ligand, ③ unknown protein with unknown ligand). (b) Features 
in bow-pharmacological space.
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for the validity of the selected features through this approach, we tested the accuracy of all machine learning mod-
els here described when trained exclusively on the selected features, and saw only minor losses in performance. 
This highlights that the selected features are indeed able to decipher the interaction space using various different 
classification algorithms, and further increases the confidence in the novel descriptors proposed.

As a direct test of the utility of the bow-pharmacological interaction space, we decided to train all our machine 
learning models on all ligand and protein descriptors except the bow-interaction space. We observed a drop in all 
investigated performance measures, most notably a drop of around 10% of the AUC, highlighting the importance 

Figure 2. Comparison with other four prediction methods on the same dataset. (a) The prediction 
performance in enzymes, ion channels, GPCRs, and nuclear receptors were compared. Grey bars represent the 
performance (accuracy) of other methods, and black bars represent the performance of our method. (b) The 
performance values of our model and the other four methods.

Figure 3. The prediction models with different machine learning methods on the entire dataset (Enzyme, Ion 
channel, GPCR, and Nuclear receptor). (a) The ROC curves of decision tree, logistic regression, random forest, 
SVM, and BART models. (b) The AUC, accuracy, sensitivity, and specificity of each model.
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of the bow space to achieve the performance here reported. Interestingly, sensitivity seemed most affected, sug-
gesting that the bow space is most useful to increasing the true positive rate.

We built prediction models with either “strictly selected features” or “selected features” for the three datasets 
in section 3 and compared the model performances. As shown in Fig. 4a,b, models with fewer features did not 
predict considerably better. Based on the increasing  number  in the feature sets (234, 280 and 439), the prediction 
accuracy was raised to 92.5%, 93.1% and 95.2%, respectively.

Index-based physicochemical features (IPC) facilitates prediction and interpretation. Effective 
representation of proteins and ligands is essential for identifying drug-target interactions and it has previously 
been discussed that an optimal descriptor needs to be identified for a chemogenomic project19. In addition to 
our novel interaction space that extends the chemogenomic capabilities, we have also devised a new feature to 
represent proteins, called the index-based physicochemical feature (IPC). Previous protein representations fall 
into two general categories: structure-based and sequence-based. The structure-based representations rely on 
the knowledge of protein structure, which is not always available for most proteins; sequence-based representa-
tions only require information about the protein sequence, which is readily available. Typically, a sequence-based 
method uses the information of the amino acid composition of a protein, but neglects the sequence order of the 
amino acids in the polypeptide chain. To represent proteins with both the amino acid composition and sequence 
order information, we put forward IPC, a new feature that considers the effects from neighbouring amino acids. 
The effect of flanking amino acids to center amino acids declines as the distance of two amino acids increases 
along the protein sequence (see Methods).

To evaluate the impact of IPC protein representation on model performance, we built one model with basic 
physicochemical features (BPC), which are classic sequence-based features for protein-related predictions 
and a second model with index-based physicochemical features (IPC). The model built with IPC features per-
formed better than the model built with BPC in predicting protein-ligand interactions (Fig. 5). The IPC model 
achieved a prediction accuracy of 74.8% in comparison with the BPC model’s achieved 64.4%. This suggests that 
the proposed distance-aware IPC features were more informative than BPC for encoding protein sequence in 
protein-ligand prediction problems.

Case studies. To test whether our prediction algorithm would identify any useful ligand-target interac-
tions, we specifically investigated some of the most confident predictions. For example, based on our model, 
gamma-aminobutyric acid (CID000000119) was predicted with a high probability to interact with three proteins, 
but olfactory receptor 7G2 (ENSP00000303822) was put forward as the most likely interaction candidate protein 
(a segment of results generated by our model is tabulated in Supplement Table S1). The interaction between 
CID000000119 and 7G2 was revealed in the literature20 but had not been collected in the database yet.

Figure 4. Prediction  models before and after feature selection on the entire dataset (Enzyme, Ion channel, 
GPCR and Nuclear receptor). (a) The prediction accuracy of models with different feature sizes. (b) The 
number of features and prediction performance. (c) The number of selected features in each part of bow-
pharmacological space.
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To illustrate that our model is able to search for new ligands of important target proteins, we present a case 
study to predict new interacting ligands for kinesin-like protein, KIF11. KIF11 is a cytoskeletal protein that 
belongs to the kinesin-like protein family and plays a role in chromosome positioning, centrosome separation, 
and bipolar spindle establishment during cell mitosis. KIF11 is inhibited by certain small molecules such as 
Monastrol, a prototype anti-cancer drug that selectively inhibits a mitotic kinesin Eg5, several derivatives of 
which are currently under clinical trials and being investigated in the field of malignant tumour study21. Based 
on our model’s prediction, KIF11 interacts with ispinesib mesilate (G7X) with a probability of 0.92. To verify the 
prediction, we performed a docking simulation and literature search. In the docking result, G7X was obviously 
bound to KIF11 (Fig. 6). The binding affinity calculated by AutoDock Vina (1.1.2) is −9.5 kcal/mol, which falls 
within the conventional binding energy interval of −9 to −12 kcal/mol. The prediction and simulation results 
were further validated recently by an independent group using a crystallography method. Their results showed 
the same pose as the docked pose22, attesting to the predictive accuracy of our model.

Discussion
Protein-ligand interactions are fundamental for myriad processes occurring in living organisms. Our investi-
gation into these interactions is therefore promising for our understanding of the biochemical underpinning of 
cellular systems and of perturbations into these systems, and constitutes a major step in drug discovery research. 
With the development of sophisticated computer algorithms, protein-ligand interactions have been increasingly 

Figure 5. Comparison of the predictions based on basic physicochemical features (BPC) or index-based 
physicochemical features (IPC). (a) Sensitivity, specificity, accuracy, and AUC are plotted from left to right. 
Green bars represent the performance of prediction based on basic physicochemical features (BPC), red bars on 
index-based physicochemical features (IPC). (b) The performance values of BPC and IPC.

Figure 6. Docking simulation for G7X and kinesin-like protein KIF11. (a) Kinesin-like protein KIF11 is in pink 
and G7X in white and green. G7X is likely to bind to the protein pocket. (b) Zoomed-in close-up of the binding 
zone. Spheres represent proteins, and stick represents G7X.
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deconvoluted by in silico approaches. Our study described the development of a machine learning approach 
based on a new class of descriptors as well as a novel algorithm to accurately predict protein-ligand (drug-target) 
interactions.

For the first time, we applied the Bayesian additive regression trees (BART) algorithm on a uniform space 
that encodes feature information from proteins and ligands, a classical chemogenomic approach, but here for 
the first time also include an interaction space that encodes for known protein-ligand interactions. This space 
was constructed by relying on average fingerprints—a concept that has been underexplored in the computational 
drug design community and has most notably been applied as median molecules in de novo design23–25 as well 
as implicitly when using clustering approaches26,27. This information space was coined the bow-pharmacological 
space. It encapsulates essentially non-redundant and relevant information for predicting interaction between 
proteins and potential ligands or vice versa and we showed a significant increase in performance over various 
established machine learning algorithms when supplied with the novel descriptor, highlighting its utility (Fig. 1). 
Furthermore, we also developed novel protein target descriptors that included predicted tertiary structure and 
showed an improved performance over two-dimensional protein descriptors. We foresee an increased interest in 
using such types of descriptors by other researchers in pharmaceutical and chemical biology research.

In our model, BART, a non-parametric Bayesian regression approach, is applied. It provides a reliable poste-
rior mean and interval estimates of the true regression function as well as the marginal effects of potential pre-
dictors14, while many other binary classification tools (e.g., KNN, SVM)28,29 simply produce a binary yes-or-no 
result. For the interaction within a protein-ligand pair, BART generates a probabilistic scoring of the likelihood 
of the interaction. An in silico probabilistic evaluation of the likelihood of interactions could serve as an initial 
filtering step to select the most probable candidates out of a pool of hundreds or even thousands, thus lowering 
the experimental cost and time.

Our approach extends our knowledge of potential ligands for a specific protein, and proteins that interact 
with a specific ligand are useful in drug discovery efforts to identify yet undiscovered protein-ligand interactions. 
In addition, the probability index of protein-ligand pairs can be used for filtering and stratifying multiple drug 
candidates, as well as for evaluating the off-target effects of specific drugs and other protein-ligand interactions. 
With the high predictive accuracy and high-throughput performance of our prediction algorithm, we envision 
that more drugs will be able to be evaluated and developed more rapidly, and a deeper understanding of drug 
effects and drug targets will be achieved.

Models and Methods
Construction of bow-pharmacological space. All features in the bow-pharmacological space are sum-
marized in Fig. 1b. In the protein space, we considered three main feature types for comprehensively representing 
a protein. These feature types include the amino acid composition, physicochemical features of the protein, and 
property groups in the polypeptide sequence. Further, these types were subdivided into ten feature sets desig-
nated F1, F2, …, F10. The composition vector (CV, as F1) contains information about the amino acid composition 
of the primary protein sequence, but not its relative position. To describe both the composition and the relative 
position of amino acids in the protein sequence, we used the composition moment vector (CMV, as F2).

In addition, we included three different types of physicochemical features: first, basic physicochemical fea-
tures (BPC, as F3) such as hydrophobicity, charge, and polarity serve as a classic description of protein sequence, 
which has performed well for many protein-related prediction problems30–32; second, the neighbourhood-based 
physicochemical feature (NPC, as F4) complemented the BPC by combining the target amino acid site and its 
two neighbours; and third and most importantly, the index-based physicochemical feature (IPC, as F5) was con-
structed with the assumptions that each site on the protein sequence had an effect on others and that the effects 
were related to the protein composition (see Methods). Regarding amino acid positions, amino acids that were 
close to the primary sequence could be part of flexible loops and therefore not close in 3D space. Conversely, 
amino acids that were far apart might form a pocket. IPC is the descriptor that incorporated the secondary/
tertiary structure (prediction). Additionally, we incorporated five feature sets for the protein property groups, 
including the R groups (RG, as F6), the electronic groups (EleG, as F7), the exchange groups (ExG, as F8), the 
hydrophobic groups (HG, as F9) and the side chain groups (SCG, as F10).

In the ligand space, we adopted the MACCS fingerprint, one of the most widely used “structural fingerprints” 
based on pre-defined chemical substructures33. MACCS has 166-bit structural key descriptors, each of which is 
associated with a SMARTS pattern that represents a functional group or test of a combination of substructure34.

In the protein-ligand interaction space, the links that represented the known interactions between proteins 
and their ligands were quantified. As shown in Fig. 7, known ligands of each protein were coded by the MACCS 
keys; these keys were averaged to generate a unique fingerprint that represented the known links between each 
protein and the ligands. We named this feature MACCSP.

Gold standard dataset. The interactions between ligands and target proteins were retrieved from the 
KEGG BRITE35 and DrugBank databases36. The number of known interactions are 5,125 in total; 2926, 1476, 635, 
and 90 for enzymes, ion channels, GPCRs and nuclear receptors, respectively. The number of known proteins/
drug targets in each category was 664, 204, 95, and 26, respectively. Chemical structures of the drugs and lig-
ands were obtained from the DRUG and COMPOUND Sections in the KEGG LIGAND database35. Amino acid 
sequences of the target proteins were obtained from the NCBI database. Taken together, 5,125 interactions were 
treated as the positive dataset.

The negative dataset (non-interactions) was composed of the proteins and ligands which were not in the 
5,125 interactions. The protein pool was generated by eliminating 1,051 proteins in the positive dataset from the 
16,267 human-origin proteins in Swiss-Prot (2012). The ligand pool was generated by eliminating the ligands in 
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the positive dataset from the 525,766,279 ligands in the STITCH database (2012). After mixing the positive and 
negative datasets, a randomly selected 70% of the data was used for training and the other 30% was used for test-
ing. In our study, both 10-fold cross-validation and independent testing were used to assess model performance.

Coding features in bow-pharmacological space. Protein space. Feature 1: Composition vector (CV, 
20 dimensions).

CVi denotes the percentage composition of amino acid (AA) i in the protein sequence:
CVi = (number of amino acid i in the sequence)/(total number of AA’s in the sequence).
20 amino acids were coded in alphabetical order: A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, and 

were denoted AA1, AA2, …, AA20, respectively.
Feature 2: First and second order composition moment vector (CMV, 40 dimensions).
The composition moment vector of a protein was defined as follows:
For k = 1, xi

(1) is the i-th entry of the first-order composition moment vector,

∑= =
− … −

CMV x
N N N k

n1
( 1) ( )

( )i i
j

ij
1 (1) 1

and for k = 2, xi
(1) is the i-th entry of the second-order composition moment vector,

∑= =
− … −

CMV x
N N N k

n1
( 1) ( )

( )i i
j

ij
2 (2) 2

where CMV is the composition of the i-th AA in the sequence, N is the length of the AA sequence, nij is the j-th 
position of AAi and k is the order of the composition moment vector.

The first and second orders of CMV were used, while the zeroth order reduces to the composition vector (CV, 
feature 1).

Feature 3: Basic physicochemical features (BPC, 7 dimensions).
In this study, seven physicochemical properties were chosen from AA index. They include hydrophobicity, 

charge, polarity, volume, flexibility, isoelectric point, and refractivity. For each of these properties, the basic phys-
icochemical feature is calculated by = ∑ =BPC Pi

N
i1 , where Pi is the relevant physicochemical property of the i-th 

amino acid in the sequence.
Feature 4: Neighbourhood-based physicochemical features (NPC, 7 dimensions).
The seven physicochemical properties in the NPC are the same as those in the BPC. For each property, the 

NPC feature considers the effect of the properties of its neighbouring AA and is calculated by 
= ∑ − ×= − +NPC P P P( )i

N
i i i1

2
1 1 , where N is the length of the protein sequence, and Pi is the concerned physico-

chemical property of the i-th amino acid in the sequence.
Feature 5: Index based physicochemical features (IPC, 7 dimensions).
The seven physicochemical properties used in IPC are the same as those in the BPC and the NPC. For each 

property, the IPC feature is calculated in three steps.
Step 1:

Figure 7. The scheme of generating MACCSP. Ligands, MACCS keys, and the function for generating 
MACCSP are illustrated. Note that the numbers in MACCSL and MACCSP are artificial, not real numbers.
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=
−P R P R P

SD P
( ) ( )

( )
i

i
1

1
0

1
0

1
0

where P1(Ri) is the original value of physicochemical feature 1 (seven in total, first is hydrophobicity). P1
0 is the 

average of the basic physicochemical feature 1 over the 20 AAs, and SD P( )1
0  is the corresponding standard devia-

tion. Pi is also calculated for i in 2, …, 7 (six other physicochemical features: charge, polarity, volume, flexibility, 
isoelectric point and refractivity).

Step 2:

= −+ +J P R P R[ ( ) ( )]i i k i i, 1 1 1
2

∑δ =
− =

−

+N k
J1

k
i

N k

i i k
1

,

where k is the interval between two amino acids, k ∈ [1, N − 1]; N is the number of amino acids in the sequence. 
δk is the k-th correlation factor that reflects the sequence order correlation between all the k-th most contiguous 
residues.

For example, with k = 1, we have

δ =
−

+ + + … + −N
J J J J1

1( )N N1 1,2 2,3 3,4 1,

and with k = 2, we have

δ =
−

+ + + … + −N
J J J J1

2 ( )N N2 1,3 2,4 3,5 2,

Accordingly, all the J and δ values can be calculated.
Step 3:
After calculating all the J and δk, calculate the IPC,

δ
= ∑

−
=
−

IPC
N 1

k
N

k1
1

Feature 6: R group features (RG, 5 dimensions).
There are five types of protein R groups. RGi is the percentage of all amino acids in the sequence that have R 

groups of type i, where i = 1, 2, …, 5. The case of i = 1 corresponds to non-polar aliphatic AAs (A, G, I, L, M, V), 
i = 2 to polar uncharged AAs (C, N, P, Q, S, T), i = 3 to positively charged AAs (H, K, R), i = 4 to negative AAs (D, 
E), and i = 5 to aromatic AAs (F, W, Y).

Feature 7: Electronic group features (EleG, 5 dimensions).
EleGi is the percentage composition of electronic group i in the sequence, where i = 1, 2, …, 5. The case in 

which i = 1 corresponds to electron donor AAs (A, D, E, P), i = 2 to weak electron donor AAs (I, L, V), i = 3 to 
electron acceptor AAs (K, N, R), i = 4 to weak electron acceptor AAs (F, M, Q, T, Y), and i = 5 to neutral AAs (G, 
H, S, W).

Feature 8: Exchange group features (ExG, 6 dimensions).
Exchange groups were clustered by the conservative replacements of amino acids during evolution. ExG1 

corresponds to the amino acid C; ExG2 to A, G, P, S, T; ExG3 to D, E, N, Q; ExG4 to H, K, R; ExG5 to I, L, M, V; 
and ExG6 to F, W, Y.

Feature 9: Hydrophobicity group features (HG, 4 dimensions).
Hydrophobicity groups were formed according to the water-soluble side chains of amino acids. HGi is the 

percentage composition of hydrophobicity group i in the sequence. The case i = 1 corresponds to hydrophobic 
AAs (A, C, F, G, I, L, M, P, V, W, Y), i = 2 to hydrophobic basic AAs (H, K, R), i = 3 to hydrophobic acidic AAs (D, 
E), and i = 4 to hydrophobic polar with uncharged side chain AAs (N, Q, S, T).

Feature 10: Side chain group features (SCG, 6 dimensions).
Side chain groups were based on the attributes of side chains including molecular weight, polarity, aro-

maticity, and charge. SCGi is the percentage composition of side chain group i in the sequence. The case in 
which i = 1 corresponds to tiny side chain AAs (A, G), i = 2 to bulky side chain AAs (F, H, R, W, Y), i = 3 to 
polar-uncharged AAs (D, E), i = 4 to charged side chain AAs (D, E, H, I, K, L, R, V), i = 5 to polar side chain 
AAs (D, E, K, N, Q, R, S, T, W, Y), and i = 6 to aromatic side chain AAs (F, H, W, Y). Although this feature 
and Feature 6 were both based on the R groups of amino acids, they are different in division criteria and 
biological meaning.

Ligand space. Feature 11: MACCS for ligands (MACCSL, 166 dimensions).
Each ligand was represented with a MACCS key fingerprint, which was calculated with molecular oper-

ating environment (MOE). MACCS encoded the molecular structure in 166 bits (binary digits). Each bit 
in a structural fingerprint corresponds to the presence (1) or absence (0) of a specific substructure in the 
molecule.
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Protein-ligand interaction space. Feature 12: MACCS for proteins (MACCSP, 166 dimensions).
To encode the information of known protein-ligand interactions, we first collected all the known ligands for 

each specific protein and then added up the MACCSL values of these interacted ligands. Finally, the sum was 
divided by the total number of connected ligands.

Feature selection by Boruta. The Boruta algorithm is a wrapper method built around the random forest 
classification algorithm18. Random forest is a category of ensemble methods in which classification is performed 
by voting of multiple unbiased weak classifiers (decision trees). These decision trees are independently developed 
on different samples drawn independently and randomly from the training set. A random permutation of each 
feature was performed, and the resultant loss of accuracy of the classification was measured for each tree to infer 
the importance of the feature.

BART and other machine learning models. Bayesian Additive Regression Trees (BART) is a Bayesian 
tree ensemble method for non-parametric learning. The unique characteristic of BART is a regularization prior 
that encourages the decision trees in the Bayesian tree ensemble to be small in size. The sum of the resultant trees, 
each of which is a weak learner, combines to be a non-parametric model that explains and predicts the relation 
between the predictors and responses. The trees and the corresponding weights are developed with the boosting 
algorithm implemented through Markov chain Monte Carlo (MCMC).

We used the R package Bart to implement this method. BART was defined by a statistical model: a prior and 
a likelihood. The features proposed above are used as input into the BART algorithm. Essentially, BART first 
constructed a simple weak learner by a prior and then built a Bayesian “sum-of-trees” model. To fit the model, 
BART employed a tailored version of Bayesian backfitting Markov chain Monte Carlo (MCMC) method that 
interactively constructed and fitted successive residuals37. The probability values above 0.5 generated by BART 
were classified to “interaction” group, and the values equal/below 0.5 were classified to “non-interaction” group.

Besides BART, other machine learning methods were applied as well, including logistic regression38, support 
vector machine (SVM)39, decision tree, and random forest. Logistic regression is a statistical method for analyz-
ing a dataset in which there are one or more independent variables that determine an outcome, and is used for 
estimating the probability of an event38. Support vector machine (SVM) efficiently performs a non-linear clas-
sification using what is called the kernel trick, implicitly mapping inputs into high-dimensional feature spaces 
to build a maximum margin hyperplane. A decision tree is a decision support tool that uses a tree-like graph or 
model of decisions and their possible consequences. Random forest is a meta-estimator that fits a number of 
decision tree classifiers. Each tree gives a classification, and we say the tree “votes” for that class. The forest selects 
the classification having the most votes in the forest. We used Python along with a machine learning package, 
scikit-learn (specifically linear_model.LogisticRegression with parameter C = 1e5) to implement logistic regres-
sion. The SVM models were built based on the libsvm package from Sklearn (svm.SVC), where gamma was set at 
0.0001 and C was set at 100. We implemented decision trees with the function tree. DecisionTreeClassifier from 
the sklearn package. We used the RandomForestClassifier class in Sklearn.ensemble along with the number of 
jobs equal to six for algorithm implementation.

Performance measurements. We conducted a 10-fold cross-validation and independent testing to evalu-
ate the predictive performance of the models. A confusion matrix was applied to calculate sensitivity, specificity, 
and overall accuracy of our classifiers. Accuracy = (TP + TN)/(TP + FP + TN + FN), Sensitivity = TP/(TP + FN), 
and Specificity = TN/(TN + FP), where TP is the number of true positives, TN is true negatives, FP is false pos-
itives, and FN is false negatives. Furthermore, Receiver Operator Characteristic (ROC) curves were plotted to 
depict relative trade-offs between accuracy and coverage with TP on the y-axis and FP on the x-axis40. The area 
under the ROC curve (AUC) was also calculated as a measurement of performance41.
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