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APPLICATION NOTE
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ABSTRACT
The yield spread, measured as the difference between long- and short-term interest
rates, is widely regarded as one of the strongest predictors of economic recessions.
In this paper, we propose an enhanced recession prediction model that incorporates
trends in the value of the yield spread. We expect our model to generate stronger
recession signals because a steadily declining value of the yield spread typically
indicates growing pessimism associated with reduced future business activity. We
capture trends in the yield spread by considering both the level of the yield spread
at a lag of twelve months as well as its value at each of the previous two quarters
leading up to the forecast origin, and we evaluate its predictive abilities using
both logit and artificial neural network models. Our results indicate that models
incorporating information from the time series of the yield spread correctly predict
future recession periods much better than models only considering the spread value
as of the forecast origin. Furthermore, the results are strongest for our artificial
neural network model and logistic regression model that includes interaction terms,
which we confirm using both a blocked cross-validation technique as well as an
expanding estimation window approach.
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1. Introduction

The yield spread, which is typically defined as the difference between the interest
rates of the 10-year Treasury bond and the 3-month Treasury bill, has been shown
to be an excellent predictor of recessions [6, 7, 5, 15]. Predicting recessions is an im-
portant task, because an unanticipated recession can create significant hardships for
society, such as unemployment, declining portfolio values, reduced corporate profits,
and bankruptcy. Therefore, an accurate recession forecast allows businesses, govern-
ments, and consumers to make decisions to minimize its negative impact. Additionally,
because these decisions often take time to impact the economy, it is best if a recession
can be predicted far in advance. Consequently, our focus is on developing a model that
will generate better forecasts of whether a recession will occur one year in the future.

The existing literature on the prediction of recessions in the United States using the
yield spread can be divided into two groups based on the type of dependent variable
used in the study. In the first group, continuous measures such as the gross domestic
product [21] and real manufacturing and trade sales [14] are used as the dependent
variable. The predicted growth or decline in economic activity would then indicate if
a recession is on the horizon.

The second group, into which our work belongs, consists of classification models,
where the dependent variable is binary. The values of the dependent variable usually
reflect the recessionary periods identified by the National Bureau of Economic Research
(NBER).1 [9] provides an overview of the different considerations and issues pertinent
to this stream of research, and our discussion in the remainder of this section focuses
on studies where the dependent variable is a binary recession indicator.

Initial work on classifying recessions using the yield spread focused on simple probit
models where the independent variable is the yield spread measured at a particular
forecast horizon; for example, 1, 2, 3, or 4 quarters prior to the time period being
forecasted [6]. Later studies examined whether the inclusion of a second independent
variable in addition to the yield spread improves the predictive accuracy of the probit
models [5, 3, 8, 9, 15, 22]. Examples of these independent variables include gross
domestic product, manufacturing and trade sales, income, employment levels, and
stock price indexes.

However, because recessions and business cycles in general tend to be asymmetric,
several studies have noted that linear, constant-parameter models may not adequately
explain and predict these business cycles [18, 1], and more recent work has tended to
rely primarily on less restrictive forecasting methodologies. Artificial neural networks
(ANN) in particular, which are non-linear, non-parametric models, may be better
equipped for modeling business cycles and financial crises [4], and thus predicting
recessions as a result of their flexibility.

[18] analyzes ANN models with forecast horizons ranging from 1 to 8 quarters, and
25 different input variables such as interest rates and spreads, stock price indexes,
macro indicators, and indexes of leading indicators. While it is found that the yield
spread generates the lowest out-of-sample mean squared forecast error (MSFE) among
the predictors, and performs best at a forecast horizon of 4 quarters, adding a second
predictor variable does, in some instances, improve the explanatory power of the model.
However, [18] also notes that the predictors that help improve the forecasting accuracy
in one subperiod often differ from those that perform best in another subperiod. As
a result, while we also explore the use of ANN models in our study, our focus is on
extracting as much information as possible from the yield spread, which has a direct
impact on the level of future business activity and has been the most reliable predictor
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of future recessions.
Our primary contribution to this stream of research on predicting recessions is to

provide evidence that forecasts can be improved by incorporating trends in the yield
spread. Recessions do not occur instantaneously; instead, there is often a gradual
decline in the economy to a point when one would consider the country to be in a
recession. Given that interest rates have a direct impact on economic activity, we
expect that trends in the spread will amplify the strength of this signal. For instance,
a steadily declining value of the spread can capture growing pessimism associated with
reduced future business activity.

We incorporate information produced by trends in the yield spread by including
either the twelve month lagged value of the spread and its change over each of the
preceding two quarters, or in the case of our ANN models by simply inputting its
values at lags of 12, 15, and 18 months.2 This approach is different from the previously
described works, which only consider the value of the yield spread as of the forecast
origin and ignore whether its value has been increasing, decreasing, or relatively stable.
Accounting for trends in the yield spread should help pick up on broader movements
in overall economic activity that could help indicate if a recession in imminent.

To the best of our knowledge, [15] is the only other study to consider using a lagged
value of the yield spread to improve recession forecasts; however, their baseline model
only includes a single value of the yield spread. As a second predictor, they explored
the addition of various financial and macroeconomic variables as well as a single lagged
value of the yield spread while relying on probit models to generate recession forecasts.

Our work differs from that of [15] in several important ways. First, our study ex-
plicitly focuses on whether trends in the yield spread provide enhanced information
for predicting recessions. We incorporate information regarding how the spread’s value
evolved over multiple points in time leading up to the forecast origin to evaluate its
impact. Second, we utilize artificial neural network models as well as a logistic regres-
sion model with multiple interaction terms to better extract information from the time
series of the yield spread. The greater flexibility and lack of imposed functional form of
artificial neural networks in particular has been shown to result in greater predictive
ability for a variety of financial applications [13, 23, 16]. Third, we use the accuracy
and sensitivity metrics to evaluate model performance in addition to mean absolute
error and Brier score, whereas [15] focus exclusively on the area under the receiver
operating characteristic curve. We do not view the use of the AUROC as a weakness
of [15]; however, all individual performance measures have certain drawbacks. For in-
stance, AUROC provides little information regarding the size of model errors, and
because all models achieve very high specificity values even at modest cutoff values,
the vast majority of the area under the curve is derived based on performance at
trivially low cutoff values.3

We examine the impact of yield spread trends within both logistic regression and
artificial neural network models using monthly interest rate data from the Federal Re-
serve on U.S. Treasury securities and business cycle dates from the National Bureau
of Economic Research (NBER) from January 1981 to August 2015, which we evalu-
ate through two approaches: a blocked cross-validation approach and an expanding-
window out-of-sample forecasting approach. Our findings indicate that the inclusion
of yield spread trends results in better overall recession predictions than traditional
models that only consider the value of the spread as of the forecast origin. Additionally,
an ANN model with a single hidden layer and two hidden-layer nodes and a logistic
regression model with interaction terms produce the strongest forecasting results while
traditional simple logistic regression models appear to ignore valuable information and
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larger ANN models are exposed to the risk of potential overfitting.
The remainder of the paper is organized as follows: Section 2 outlines our method-

ological approach including our logistic regression and artificial neural network models.
We describe the data and discuss the results of our empirical analyses in Section 3.
Concluding remarks follow in Section 4.

2. Methodology

Our focus is on whether the time series of the yield spread can be used to generate
improved recession forecasts; therefore, we construct models that incorporate infor-
mation regarding how the yield spread has changed over time. We hypothesize that
since the yield spread has good predictive power for the future state of the economy,
changes in its value should provide additional information that could strengthen the
predictive accuracy of existing models. Given findings in [18] that the yield spread has
its greatest predictive power at a one-year forecast horizon coupled with the fact that
one-year provides sufficient lead time for model users to react, we focus our analysis
on models with this forecast horizon.

Let xt represent the value of the yield spread in period t, and let ∆t1,t2 denote the
difference in the yield spread between time periods t1 and t2; that is, ∆t1,t2 = xt2 −xt1 .
With xt−12, xt−15, and xt−18 representing the yield spread values at lags of 12, 15,
and 18 months, respectively, and the binary variable yt indicating if period t is a
recessionary period (yt = 1) or not (yt = 0), we define model LM which accounts for
trends in the yield spread as follows:

LM: ln

(
yt

1 − yt

)
= β0 + β1xt−12 + β2∆t−15,t−12 + β3∆t−18,t−15.

= δ0 + δ1xt−12 + δ2xt−15 + δ3xt−18.

The first independent variable, xt−12, helps capture the level of the yield spread,
which prior work has shown has a tendency to be small or negative prior to economic
recessions. The variables, ∆t−15,t−12 and ∆t−18,t−15, provide additional information
about how the yield spread has evolved leading up to the forecast origin at time
t− 12 and may contain important information regarding whether the future economic
outlook is improving or declining. While the two representations of model LM generate
identical forecasts, which is our primary focus, it is worth noting that we cannot include
all pairwise differences of the three yield spread lags, as the addition of ∆t−18,t−12

would render the parameters unidentifiable due to perfect multicollinearity.
As a basis for comparison, we also define the following traditional simple logistic

regression models with either xt−12, xt−15, or xt−18 as the independent variable, where
we acknowledge that the latter two models face the disadvantage of a longer forecast
horizon:
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L12: ln

(
yt

1 − yt

)
= β0 + β1xt−12.

L15: ln

(
yt

1 − yt

)
= β0 + β1xt−15.

L18: ln

(
yt

1 − yt

)
= β0 + β1xt−18.

Because the relationship between the predictive variables may be nonlinear, we also
utilize ANN models with each of the three yield spread lags, xt−12, xt−15, and xt−18,
as input variables. We expect the less restrictive assumptions required by this non-
parametric approach to allow for better utilization of the information in yield spread
trends. In general, a neural network model consists of three parts: the input layer,
hidden layer, and output layer (Figure 1).

Figure 1. A three-layer artificial neural network with two hidden nodes in the hidden
layer.

The input layer is comprised of nodes representing each of the predictor variables. In
this study, the input layer has three nodes representing the three yield spread variables
xt−12, xt−15, and xt−18. The values of the input nodes are fed into the nodes in the
hidden layer.

The hidden layer may contain multiple layers with each layer containing a pre-
specified number of hidden nodes. In Figure 1, for example, there is only a single hidden
layer, which contains two hidden nodes. Each hidden node combines information from
all the input nodes as a weighted sum using weights w1j , w2j , . . . , wij , and a bias value
w0j (where wij is the weight applied to the value passed from node i in a prior layer to
node j in the subsequent layer). Thus, the weights for one hidden node can be different
than those for another hidden node.

An activation function f then converts the weighted sum into a value that is fed
forward to the next layer, which is either nodes in the next hidden layer or the output
layer. We use the logistic sigmoid function as the activation function, which sends a
signal with a value between 0 and 1 and is commonly used in binary classification
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problems.

f(Σ) = f(w0j+w1jxt−12+w2jxt−15+w3jxt−18) =
1

1 + e−(w0j+w1jxt−12+w2jxt−15+w3jxt−18)

Finally, the output layer contains nodes representing the target variable. In this
study, only a single output node is required because the dependent variable yt is
binary.

We explore ANN models with 1 to 10 hidden nodes in the single hidden layer. Each
of these models will be denoted as NNh, where h is the number of hidden nodes in
the model. We also explored ANN models with two hidden layers, but the results of
these models were similar to those with only a single hidden layer. As such, we opted
for the simpler single-hidden-layer model so as to minimize any potential issues with
overfitting.

Although the multiple logistic regression model, LM, and the ANN models use an
equal number of predictor variables, the ANN models possess the advantage of having
more estimated parameters via their weights and biases that can be used to potentially
generate better forecasts. While we acknowledge that not having to explicitly model a
complex, unknown functional form is an advantage of the ANN models, we do explore
logistic regression models that include interaction terms in order to provide a fairer
comparison. We include the results for the interaction model, IM, shown below:4

IM: ln

(
yt

1 − yt

)
= β0 + β1xt−12 + β2xt−15 + β3xt−18 + β4xt−12 ∗ xt−15

+ β5xt−15 ∗ xt−18 + β6xt−12 ∗ xt−18.

3. Empirical Analyses

Our empirical tests use monthly recession data starting from January 1981 with the
corresponding predictor variables available as of January 1980. We choose to generate
forecasts beginning in 1980 because of dramatic changes in monetary policy announced
by the Federal Reserve on October 6th, 1979 intended to combat high inflation rates.
The policy changes involved a temporary shift of focus from controlling the level of the
federal funds rate towards targeting monetary aggregates, and inflation has remained
considerably more stable from 1980 until the present. As a result, including forecasts
prior to 1980 may be inappropriate because economic conditions pre- and post-1980
were substantially different.

[17] lists the time periods for all recessions starting from June 1857. We use this
information to code the monthly yt variable to indicate if period t is a recessionary
period or not. Monthly interest rates for the 10-year Treasury bond and 3-month
Treasury bill were obtained from the Federal Reserve Statistical Release H.15.5 The
yield spread for each month is then calculated by taking the difference of the two
interest rates. In total, our data set contains 416 records representing the months
from January 1981 to August 2015.6

We first use a blocked cross-validation approach to evaluate the predictive perfor-
mance of the logit and ANN models. We partition our sample into four equal-sized
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uninterrupted time series, or blocks, which each contain a significant recession and
serve as validating sub-samples. This is different from previous work in this area in
which a single hold-out data set is used to determine the best predictive model and is
the method that [2] recommend become the standard for time series evaluation. We
remove observations on each side of each validation set from its corresponding train-
ing set to ensure their independence as previously proposed in [19]. In prior studies, a
predictive model is typically trained on data prior to a certain date, and the model is
then tested on data beyond that date. An issue with this approach is that a particular
model might perform better than another model in this single pair of training and
test data sets, but it may not be better than the other model when applied to other
instances. Cross-validation overcomes this overfitting issue, because it is a repeated
hold-out method that evaluates the performance of a model using multiple holdout
samples.

We also use an expanding-window out-of-sample forecasting approach to evaluate
the performance of our models that incorporate trends in the yield spread as well
as our baseline simple logistic regression models. This expanding-window approach
is similar to those used by many previous studies in the literature and provides the
benefit of mimicking how the predictive models would be utilized in practice.

The sensitivity and specificity metrics are commonly used to evaluate the perfor-
mance of predictive models. For our study, sensitivity measures how well a model
correctly predicts recessionary periods while specificity measures how well it predicts
non-recessionary (i.e. expansionary) periods. Because the objective is to correctly pre-
dict recessionary periods, and there is likely far less harm done in producing a false
warning signal before times of expansion than failing to identify an oncoming reces-
sion, the more relevant performance metric is sensitivity, which is also known as the
true positive rate. However, it is important to ensure acceptable levels for both metrics
are achieved. Additionally, for our expanding-window forecasting tests, we report each
model’s mean absolute error and Brier score with the latter being equivalent to the
sole performance measure used in [18].

3.1. Blocked Cross-Validation Approach

Table 1 outlines the design of our blocked cross-validation tests. We divide our full sam-
ple period of 416 months evenly into four consecutive 104-month blocks, and although
recessionary periods represent the minority in each block, all blocks contain a signif-
icant economic recession. This setup helps evaluate how the models might perform
in predicting a new recession, as each validation set serves to evaluate each model’s
performance on new business cycle data it has never seen before, and it also provides
a look at how the models perform within various subperiods.

Rather than using a single holdout period like traditional time series forecasting
tests, each block is used as the validation sample once with the remaining blocks used
to train each model. We ensure the independence between each training set and its
validation set by ensuring the closest month in the training set is 12 months away.
That is, we remove 11 months on each side of the validation sets from their training
sets.7 For example, Block 1 contains the first 104 records in our dataset, and when it
serves as the validation dataset time periods 116 through 416 are used to train the
models. The removal of periods 105 through 115 from the training set ensures there is
no information leakage.

In our cross-validation as well as in subsequent tests, we use a cutoff threshold of
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Table 1. Business cycle data and blocked cross-validation design.

Total Periods Recession Expansion Train Validate

Block 1 104 16 88 116:416 1:104
Block 2 104 8 96 1:93; 220:416 105:208
Block 3 104 8 96 1:197; 324:416 209:312
Block 4 104 18 86 1:301 313:416

Total 416 50 366

0.5 to indicate if the model predicts a recession or not; that is, if the predicted prob-
ability of a recession is at least 0.5, we classify that particular month’s prediction as
a recessionary period. This requires that models produce a sufficiently strong warning
signal that a recession is coming to increase their sensitivity, so that its users would
think a recession is more likely to occur than not and would be more likely to take
corrective measures.8

All of the training and testing of the predictive models were performed using the
statistical software R. We used the glm function for the logit models and the neuralnet
package for the ANN models [12, 10]. For the neuralnet function, other than setting
the maximum number of iterations to 5 million, we used the function’s default settings,
which uses the logistic function as the activation function and finds the best parameter
values for the ANN using an algorithm that is based on resilient back-propagation with
weight backtracking [20].

Table 2 reports the sensitivity and specificity values across all four blocks for each of
the predictive models. Based on the sensitivity metric, model L12 records the highest
sensitivity value among the three simple logistic regression models by correctly iden-
tifying an average of 29.3% of recession months. This is not surprising as the other
two models generate predictions with a longer forecast horizon and merely serve as
benchmarks. Logistic regression models LM and IM, which take into account trends
in the yield spread, achieve slightly higher average sensitivity values of 31.8% and
37.8%, respectively, while models NN2 and NN3 correctly classify the highest aver-
age percentage of recession months among all models with sensitivity values of 43.4%
and 43.8%, respectively. Although model NN3 achieves the highest average sensitiv-
ity value it fails to correctly classify any of the recession months in Block 2, which
contains the 1990–1991 recession – a recession that has been noted in prior studies
as being triggered by unusual events and particularly challenging to predict. For this
reason, based on sensitivity alone we prefer model NN2, as it correctly identifies part
of the recession in each block. In fact, its eight highest predicted recession probabilities
within Block 2 are for the eight recession months.

While we want models to correctly identify the recession periods, for the models to
be useful the number of false positives must also be low. The specificity columns reveal
that the simple logistic regression models correctly classify the highest percentage of
non-recessionary months, but this is attributable to their reduced tendency to generate
recession predictions overall. Among the neural network models, model NN2 has a
higher specificity than NN3 at 93.1% compared to 89.4%, so this also contributes to
our considering NN2 the best performing ANN model. While we acknowledge that
determining the optimal neural network size is a difficult task – one that we do not
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Table 2. Sensitivity and specificity values for all blocks for each model in our blocked
cross-validation process. The models include three simple logistic regression models
(L12, L15, and L18), a multiple logistic regression model (LM), a multiple logistic
regression model with interaction terms (IM), and ten neural network models denoted
by NN# where the number denotes the number of nodes in the single hidden layer.

Sensitivity Specificity

Block: 1 2 3 4 Avg 1 2 3 4 Avg

L12 56% 0% 50% 11% 29.3% 95% 100% 94% 99% 97.0%
L15 63% 0% 13% 0% 18.8% 92% 100% 94% 100% 96.4%
L18 63% 0% 0% 0% 15.6% 89% 100% 95% 100% 95.9%

LM 56% 0% 38% 33% 31.8% 91% 100% 93% 99% 95.6%
IM 50% 0% 63% 39% 37.8% 94% 100% 79% 94% 91.9%
NN1 50% 0% 50% 61% 40.2% 92% 100% 86% 94% 93.2%
NN2 50% 25% 38% 61% 43.4% 88% 100% 91% 94% 93.1%
NN3 75% 0% 50% 50% 43.8% 95% 93% 81% 88% 89.4%
NN4 44% 0% 50% 61% 38.7% 91% 99% 85% 93% 92.1%
NN5 38% 0% 50% 17% 26.0% 86% 88% 88% 91% 88.0%
NN6 63% 0% 38% 17% 29.2% 85% 90% 88% 91% 88.3%
NN7 44% 13% 38% 44% 34.5% 91% 88% 84% 91% 88.4%
NN8 44% 0% 25% 61% 32.5% 97% 93% 83% 91% 90.8%
NN9 19% 13% 38% 0% 17.2% 90% 85% 88% 94% 89.2%
NN10 31% 25% 38% 22% 29.0% 97% 88% 85% 91% 90.1%

definitively tackle – the cross-validation results suggest a smaller sized hidden layer
is sufficient given our number of input variables and the complexity of our problem
and that including many hidden layer nodes could lead to overfitting. As a result,
we focus on model NN2 in our subsequent tests as we expand our analysis of model
performance while acknowledging that similar sized neural network models generally
yield comparable performance.

3.2. Expanding-Window Out-of-Sample Forecasting Approach

Figure 2 shows the probability of recession over time as predicted by the artificial neu-
ral network model, NN2, as well as the logistic regression models L12, LM, and IM,
from using an expanding-window out-of-sample forecasting approach, which attempts
to illustrate how the models would have performed in real-time.9 The grey shaded
time periods are the recessionary periods identified by NBER. To obtain the predicted
probability values, we first trained each model using the first three years of monthly
data (January 1981 to December 1983), and then generated the 12-month-ahead pre-
dicted probability of recession for December 1984 using the fitted model. Next, we
retrained each model using the 37 months of data from January 1981 to January 1984
and generated the recession probability forecast for January 1985. We continued this
expanding-window out-of-sample forecasting process until we obtained the predicted
probabilities of recession for the final month in our sample, August 2015.

Figure 2a displays the results for the neural network model, NN2, and illustrates
several interesting attributes. First, we observe that the predicted recession probabil-
ities in most periods are either large or close to zero. This suggests that the model
produces strong warning signals when a recession is probable and that the results are
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(a) Model NN2: Artificial neural network

model with two hidden-layer nodes.

(b) Model L12: Logistic regression with yield

spread at 12 month lag.

(c) Model LM: Logistic regression incorporat-
ing yield spread trends.

(d) Model IM: Logistic regression incorporat-
ing yield spread trends and interaction terms.

Figure 2. Recession probability forecasts generated by the artificial neural network
model, NN2, and logistic regression models L12, LM, IM, from the expanding-window
out-of-sample forecasting process. The grey shaded regions represent the actual reces-
sion periods identified by NBER.

relatively insensitive to the choice of the cutoff threshold.
Second, the model correctly classifies all or part of each recession. It succeeds in

identifying all months in the 1990–1991 recession, the later part of the 2001 recession,
and the first eight months in the 2007–2009 financial crisis. Although the model gen-
erates a few false positives towards the end of 1999 and beginning of the year 2000,
a recession did occur approximately one year later, and the predicted probability of
recession is near zero throughout most of the sample period.

The recession forecasts from the traditional simple logistic regression model, L12
(Figure 2b), also exhibit a spike near each of the recession periods in our sample,
illustrating the yield spread’s well-documented predictive ability; however, the pre-
dicted probability never exceeds 0.5 during any of the recession periods, and there
are multiple instances where the probability increases to between 0.2 and 0.5 during
non-recession periods. Overall, while the yield spread is a strong recession predictor as
noted in prior studies, the model appears to produce a much noisier signal of oncom-
ing recessions. The corresponding figure for model LM (Figure 2c) shows that while
model LM generates slightly stronger recession signals at the beginning of the 2007–
2009 financial crisis compared to model L12 and predicts a slightly lower probability
of recession during the period of expansion during the mid to late 1980s, the overall
pattern is fairly similar. Model IM (Figure 2d), however, produces noticeably stronger
recession signals during each of the recession periods with relatively few spikes during
non-recessionary periods.

Table 3 summarizes the sensitivity and specificity as well as the mean absolute error
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Table 3. Performance metrics of the different forecasting models from the
expanding-window out-of-sample forecasting process.

Model Sensitivity Specificity MAE Brier Score

L12 0.00% 99.40% 0.146 0.067

LM 17.65% 99.40% 0.125 0.061
IM 50.00% 95.52% 0.107 0.060
NN2 55.88% 91.94% 0.101 0.068

(MAE) and Brier score of the expanding-window forecast probabilities generated by
the models shown in Figure 2.10

The simple logistic regression model achieves a sensitivity of 0% with a specificity
of 99.40%. The model only generates a predicted probability of recession above 0.5 in
two months, neither of which were during recessions; thus, the model fails to correctly
classify any of the recession periods but classifies all but two of the non-recession
periods correctly. Model LM achieves a higher sensitivity of 17.65% while correctly
classifying the same percentage of non-recessionary periods as indicated by its speci-
ficity. Additionally, while models IM and NN2 achieve slightly lower specificity, they
both identify at least half of the recession periods with specificity values of 50.00%
and 55.88%, respectively. Given the greater costs associated with failing to foresee and
plan for a period of recession than expansion, the performance of models IM and NN2
appear to be the most favorable.

The MAE and Brier score are also used to evaluate the performance of our vari-
ous models, and while it is ideal that our preferred model is able to correctly classify
recessions at a natural cutoff of 0.5, these measures offer an assessment that is inde-
pendent of the choice of cutoff value. Based on the MAE measure, the models that
incorporate yield spread trends, LM, IM, and NN2; outperform model L12 with mean
absolute errors of 0.125, 0.107, and 0.101, respectively, compared to 0.146. Looking
at Brier score, models LM and IM again show improvement over model L12 with
mean squared errors of 0.061 and 0.060 compared to 0.067, but by this metric model
NN2 actually fares slightly worse. However, this is largely caused by its large recession
forecasts immediately preceding the start or following the end of the official recession
periods. As a robustness test we removed the 6 months before and after each recession
from the calculation to avoid penalizing models for producing early warning signals
or predicting that a recession will persist for a while longer than it officially does
given that a post-recession recovery is generally not felt immediately. In unreported
results, we find this adjustment leads to a slight increase in the Brier score of model
L12 to 0.068 while the Brier score for models LM, IM, and NN2, fall to 0.060, 0.053,
and 0.055, respectively. Altogether, the evidence suggests model performance can be
improved by accounting for trends in the yield spread, and this information is best
incorporated using parametric models with interaction terms or non-parametric mod-
els such as artificial neural networks. Such evidence is expected to be of particular
interest to both businesses and policymakers.
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4. Conclusions

Prior research has consistently found the yield spread to be among the strongest
predictors of future economic activity. In this paper, we expand on this stream of
research by constructing predictive models that take into account how the yield spread
has changed over time. The basic intuition is that since the yield spread contains a
significant amount of predictive power regarding the future health of the economy, the
time series evolution of the spread is likely to provide a stronger signal of recessions
than its value at a single point in time and may better capture the overall trends in
market sentiment and economic activity.

We use both logistic regression models (i.e., parametric models) and artificial neu-
ral network models (i.e., non-parametric models) to evaluate whether yield spread
trends, measured based on the twelve, fifteen, and eighteen month lagged values of
the spread, can be utilized to enhance recession forecasts. The empirical results show
that our augmented models predict recessionary periods better than those that only
consider the level of the spread as of the forecast origin. The new models achieve much
higher sensitivity values while still maintaining high values for specificity and gener-
ally producing much lower forecast errors. In particular, the artificial neural network
model with a single hidden layer of two nodes correctly classifies part of each recession
in our blocked cross-validation tests and successfully predicts the highest percentage
of recessionary periods in our expanding-window out-of-sample forecasting exercise. A
logistic regression model with multiple interaction terms achieves comparable overall
performance; however, the artificial neural network offers model users the benefit of
not having to explicitly model the interactions.

Notes

1The NBER business cycle dates offer the benefit of not relying on a specific indicator of economic activity
and instead focusing on economic activity as a whole. The business cycle dating committee states that it

“examines and compares the behavior of various measures of broad activity: real GDP measured on the product

and income sides, economy-wide employment, and real income”, and may also consider additional indicators.
2The two approaches naturally yield identical probability forecasts in the case of the logistic regression

models and have minimal effect on our ANN model results. For instance, we computed out-of-sample ANN

probability forecasts using both sets of inputs and found their correlation exceeded 0.98.
3In unreported results we compute AUROC for our different models and find this metric generally ranks

the models similarly to our other measures.
4As with the logit model, LM, an equivalent representation in terms of yield spread changes can be made

for our interaction model. Given our focus on forecast performance rather than interpreting the individual

coefficients, we opt for this straightforward model representation.
5Business cycle data available at http://www.nber.org/cycles/cyclesmain.html and U.S. Treasury interest

rate data available at https://www.federalreserve.gov/releases/h15/.
6[11] notes that official NBER business cycle dates are announced with a considerable lag. For instance, the

start date of the recession which officially began in December 2007 was not announced until December 2008.

Our models attempt to identify these periods of expansion or contraction in economic activity one year before

they occur, and it is even longer before they are officially defined.
7The residual autocorrelation is small and statistically insignificant for all models well before 12 months;

however, removing fewer months has minimal effect on the results. As noted in previous work in this area, the

forecasting error is not usually a white noise process and may have temporal relationships; however, this does
not create problems in our study since we do not make any statistical inference based on the forecasting errors.

8We report additional statistics that do not involve a choice of cutoff for our expanding-window tests but
only report sensitivity and specificity here in the interest of space.

9We omit the figures for models L15 and L18 in the interest of space and to focus solely on the models with

a one-year forecast horizon.
10Most prior studies rely on a single performance measure. We choose to report a variety of measures, because

each provides additional information and, as noted in [2], all individual measures have certain shortcomings.
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