Measurement of $e p \to e' p \pi^+ \pi^-$ and Baryon Resonance Analysis

M. Ripani

Angela Biselli
Fairfield University, abiselli@fairfield.edu

CLAS Collaboration

Copyright American Physical Society
Final publisher version also available at http://prl.aps.org/pdf/PRL/v91/i2/e022002

Peer Reviewed

Repository Citation
Ripani, M.; Biselli, Angela; and CLAS Collaboration, "Measurement of $e p \to e' p \pi^+ \pi^-$ and Baryon Resonance Analysis" (2003). Physics Faculty Publications. 4.
http://digitalcommons.fairfield.edu/physics-facultypubs/4

Published Citation
M. Ripani et al. [CLAS Collaboration], "Measurement of $e p \to e' p \pi^+ \pi^-$ and Baryon Resonance Analysis", Physical Review Letters 91.2 (2003) DOI: 10.1103/PhysRevLett.91.022002

This Article is brought to you for free and open access by the Physics Department at DigitalCommons@Fairfield. It has been accepted for inclusion in Physics Faculty Publications by an authorized administrator of DigitalCommons@Fairfield. For more information, please contact digitalcommons@fairfield.edu.
Measurement of $ep \to e^'p\pi^+\pi^-$ and Baryon Resonance Analysis

(CLAS Collaboration)

1INFN, Sezione di Genova, 16146 Genova, Italy
2Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
3Moscow State University, 119899 Moscow, Russia
4Arizona State University, Tempe, Arizona 85287, USA
5University of California at Los Angeles, Los Angeles, California 90095, USA
6Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
7Catholic University of America, Washington, D.C. 20064, USA
8CEA-Saclay, Service de Physique Nucleaire, F91191 Gif-sur-Yvette, Cedex, France
9Christopher Newport University, Newport News, Virginia 23606, USA
10University of Connecticut, Storrs, Connecticut 06269, USA
11Duke University, Durham, North Carolina 27708, USA
12Edinburgh University, Edinburgh EH9 3JZ, United Kingdom
13Florida International University, Miami, Florida 33199, USA
14Florida State University, Tallahassee, Florida 32306, USA
15The George Washington University, Washington, D.C. 20052, USA
16University of Glasgow, Glasgow G12 8QQ, United Kingdom
17INFN, Laboratori Nazionali di Frascati, PO. Box 13, 00044 Frascati, Italy
18Institut de Physique Nucleaire ORSAY, IN2P3 BP 1, 91406 Orsay, France
19Institute of Theoretical and Experimental Physics, Moscow, 117259, Russia
20James Madison University, Harrisonburg, Virginia 22807, USA
21Kyungpook National University, Daegu 702-701, South Korea
22Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
Electromagnetic excitation of nucleon resonances is sensitive to the spin and spatial structure of the transition, which in turn is connected to fundamental properties of baryon structure, such as spin-flavor symmetries, confinement, and effective degrees of freedom. In the mass region above 1.6 GeV, many overlapping baryon states are present, and some of them are not well known. Many of these high-mass excited states tend to decouple from the single-meson channels and to decay predominantly into multipion channels, such as \(\Delta \pi \) or \(\eta \pi \), leading to \(N\pi\pi \) final states [1]. Moreover, quark models with approximate (or “broken”) SU(6) \(\otimes \) O(3) symmetry [2,3] predict more states than have been found experimentally; QCD mixing effects could decouple these unobserved states from the pion-nucleon channel [2] while strongly coupling them to two-pion channels [2,4,5]. These states would therefore not be observable in reactions with \(\pi N \) in the initial or final state. Experimental searches for at least some of the “missing” states predicted by the symmetric quark models, which are not predicted by models using alternative symmetries [6], are therefore crucial. Electromagnetic amplitudes for some missing states are predicted to be sizable [2] as well. Therefore, exclusive double-pion electroproduction is a fundamental tool in measuring poorly known states and possibly observing new ones.

In this Letter we report a measurement of the \(ep \rightarrow e'p\pi^+\pi^- \) reaction studied with the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. More details on the experimental and physical analysis can be found in [7]. Beam currents of a few nA were delivered to hall B on a liquid-hydrogen target, corresponding to luminosities up to \(4 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1} \). Data were taken in 1999 for about two months at beam energies of 2.6 and 4.2 GeV. The important features of the CLAS [8] are its large kinematic coverage for multi-charged-particle final states and its good momentum resolution (\(\Delta p/p \sim 1% \)). Using an inclusive electron trigger based on a coincidence between the forward electromagnetic shower calorimeter and the Čerenkov detector, many exclusive hadronic final states were measured simultaneously. Scattered electrons were identified through cuts on the calorimeter energy loss and the Čerenkov photoelectron distribution. Different channels were separated through particle identification using time-of-flight information and other kinematic cuts. We used the missing-mass technique, requiring detection in CLAS of at least \(ep\pi^\pm \). The good resolution allowed selection of the exclusive final state, \(ep\pi^+\pi^- \). After applying all cuts, our data sample included about \(2 \times 10^5 \) two-pion events.

The range of invariant hadronic center-of-mass (CM) energy \(W \) (in 25 MeV bins) was 1.4–1.9 GeV for the first two bins in the invariant momentum transfer \(Q^2 \), 0.5–0.8 (GeV/c)^2 and 0.8–1.1 (GeV/c)^2, and 1.4–2.1 GeV for the highest \(Q^2 \) bin, 1.1–1.5 (GeV/c)^2. Data were corrected for acceptance, reconstruction efficiency, radiative effects, and empty target counts [7]. In particular, a specifically developed Monte Carlo code was used to calculate the acceptance and efficiency. To this purpose, event distributions were generated in a realistic way and then processed through the GEANT-based code describing detector interactions. The same Monte Carlo event generator was used to perform extrapolations to kinematic regions where the acceptance vanishes. This type of correction
was typically only a few percent of the total cross section measured. Data were binned in the following set of hadronic CM variables: invariant mass of the $p\pi^+$ pair (ten bins), invariant mass of the $\pi^+\pi^-\pi^+$ pair (ten bins), $\pi^-\pi^+$ polar angle θ (ten bins), azimuthal angle ϕ (five bins), and rotation freedom ψ of the $p\pi^+$ pair with respect to the hadronic plane (five bins). The full differential cross section is of the form

$$\frac{d\sigma}{dWdQ^2dM_{p\pi^+}dM_{\pi^-}\pi^-d\cos\theta_{\pi^-}d\phi_{\pi^-}d\psi_{p\pi^+}} = \Gamma_v \frac{d\sigma_v}{dM_{p\pi^+}dM_{\pi^-}\pi^-d\cos\theta_{\pi^-}d\phi_{\pi^-}d\psi_{p\pi^+}} = \Gamma_v \frac{d\sigma_v}{d\tau},$$

where Γ_v is the virtual photon flux, $d\sigma_v/d\tau$ is the virtual photon cross section, α is the fine structure constant, E is the electron beam energy, M_p is the proton mass, and ϵ is the virtual photon transverse polarization [9].

Systematic uncertainties were estimated as a function of W and Q^2. The main sources were acceptance modeling, finite integration steps, and modeling of the radiative corrections, each one being at the 3% to 10% level. Each of the various cuts applied (fiducial, missing mass, etc.) contributed 2% to 5%. In Fig. 1 (left) we report the total virtual photon cross section as a function of W for all Q^2 intervals analyzed. The CLAS data points clearly exhibit structures not visible in previous data [10] due to limited statistical accuracy.

Since existing theoretical models [11] are limited to $W < 1.6$ GeV, we have employed a phenomenological calculation [12] for the first interpretation of the data. This model describes the reaction $\gamma_e p \rightarrow p\pi^+\pi^-$ in the kinematic range of interest as a sum of amplitudes for $\gamma_e p \rightarrow \Delta\pi \rightarrow p\pi^+\pi^-$ and $\gamma_e p \rightarrow p^0p \rightarrow p\pi^+\pi^-$, according to the structures observed in the final state invariant mass distributions, while all other possible mechanisms are parametrized as phase space. A detailed treatment was developed for the nonresonant contributions to $\Delta\pi$, while for $p\pi$ production they were described through a diffractive ansatz. For the resonant part, a total of 12 states, classified as 3^+ or 4^+ [1], with sizable $\Delta\pi$ and/or $p\pi$ decays, were included based on a Breit-Wigner ansatz. A few model parameters in nonresonant production were fitted to CLAS data at high W, where the nonresonant part creates a forward peaking in the angular distributions, and kept fixed in the subsequent analysis. The phase between resonant and nonresonant $\Delta\pi$ mechanisms was fitted to the CLAS data as well. To simplify the fits, we reduced Eq. (1) to three single-differential cross sections, the most sensitive to the dynamical content of mechanisms was fitted to the CLAS data as well. To simplify the fits, we reduced Eq. (1) to three single-differential cross sections, the most sensitive to the dynamical content of resonant decays, were included based on a Breit-Wigner resonance. For the resonant part, a total of 12 states, classified as 3^+ or 4^+ [1], with sizable $\Delta\pi$ and/or $p\pi$ decays, were included based on a Breit-Wigner ansatz.

The physics analysis included the following steps: (A) We produced reference curves using the available information on the N^* and Δ resonances in the $1.2–2$ GeV mass range. Discrepancies between the CLAS data and our calculation were observed, which led to subsequent steps (B) and (C). (B) Data around $W = 1.7$ GeV were fitted using the known resonances from the Particle Data Group (PDG) but allowing the resonance parameters to vary in a number of ways. The best fit, corresponding to a prominent P_{13} partial wave, could be attributed to the PDG $P_{13}(1720)$ resonance, but with parameters significantly modified from the PDG values. (C) As an alternative description, we introduced a new baryon state around 1.7 GeV. In what follows we describe each of the above steps in more detail.

Step (A): To produce our reference curves, the Q^2 evolution of the $A_{1/2}$ and $A_{3/2}$ electromagnetic couplings for the states was taken from either parametrizations of existing data [13] or single quark transition model fits [13] where no data were available. For the $P_{11}(1440)$...
(Roper), given the scarce available data, the amplitude $A_{1/2}$ was taken from a nonrelativistic quark model [14]. Partial LS decay widths were taken from a previous analysis of hadronic data [15] and renormalized to the total widths from Ref. [1]. Results for step (A) are reported in Fig. 1. The total cross section strength for $W < 1.65$ GeV (except for the region close to threshold) and for $W > 1.8$ GeV is well reproduced. In Ref. [7], a broader comparison to the differential cross sections is reported, showing that we were able to reproduce the main features of the measurement for $W < 1.65$ GeV and for $W > 1.8$ GeV. Instead, a strong discrepancy is evident at W around 1.7 GeV. Moreover, at this energy the reference curve exhibits a lack of $\Delta \pi$ strength in the $p\pi^+$ invariant mass (Fig. 1, top right) and a strong peak in the $\pi^+\pi^-$ invariant mass (Fig. 1, bottom right), connected to sizable ρ meson production. The latter was traced back to the 70%–91% branching ratio of the $P_{13}(1720)$ into this channel [1,15,16].

Step (B): We then considered whether the observed discrepancy around 1.7 GeV could be accommodated by varying the electromagnetic excitation of one or more of the PDG states. Our investigation at this stage was including the possibility of accounting for the 1.7 GeV structure via interference effects, although the peaking of such an interference pattern at the same W for all Q^2 bins would be rather surprising. Assuming the resonance properties given by the PDG, the bump at about $W = 1.7$ GeV cannot be due to the $D_{15}(1675)$, $F_{15}(1680)$, or $D_{33}(1700)$ states: the first because its well known position cannot match the peak, the second because of its well known position and photocouplings [17], and the third due to its large width (~ 300 MeV). The remaining possibilities from the PDG are the $D_{13}(1700)$, the $P_{13}(1720)$, and the $P_{11}(1710)$ [the latter was not included in step (A)], as there are no data available on the Q^2 dependence of $A_{1/2}$ or $A_{3/2}$ [17]. According to the literature [1,15,16], hadronic couplings of the $D_{13}(1700)$ and the total width of the $P_{11}(1710)$ are poorly known, while the $P_{13}(1720)$ hadronic parameters appear to be better established. Therefore our next step was to allow for a variation of the properties of these three states, in order to fit the data. Several other partial waves were investigated in step (C). Before proceeding with such fits, we performed slight variations of the initial curves from step (A), as allowed by the uncertainties in the knowledge of a number of states. All fit χ^2/ν values were calculated from the eight W bins between 1.64 and 1.81 GeV and from the three Q^2 bins (624 data points). The number of free parameters ranged from 11 to 32, depending on the fit, corresponding to $\nu = 613$ to 592 degrees of freedom.

We first performed three separate fits, (B1), (B2), and (B3), where the photo- and hadronic couplings of only one resonance at a time were widely varied, specifically the $D_{13}(1700)$ for (B1), the $P_{13}(1720)$ for (B2), and the $P_{11}(1710)$ for (B3). Fits (B1) and (B3) gave a poor description of the data, with $\chi^2/\nu = 5.2$ and 4.3, respectively. The best fit ($\chi^2/\nu = 3.4$) was obtained in (B2) (Fig. 2). However, the resulting values for the branching fractions of the $P_{13}(1720)$ were significantly different from previous analyses reported in the literature and well outside the reported errors [1,15,16]. In a final multiresonance fit (B4), we varied the photocouplings of all three candidate states, keeping the hadronic couplings inside the published uncertainties. No better solution was found, the χ^2/ν being 4.3 (Fig. 2), worse than (B2).

FIG. 2 (color). $d\sigma_{\nu}/dM_{p\pi^+\pi^-}$, $d\sigma_{\nu}/dM_{\pi^+\pi^-}$, and $d\sigma_{\nu}/d\cos\theta_{\pi^+\pi^-}$ from CLAS (from top to bottom) at $W = 1.7–1.725$ GeV and for the three mentioned Q^2 intervals (left to right). The error bars include statistical errors only. Curves (see text) correspond to the fits (B2) (red) and (B4) (blue) and are extrapolated to the mass distributions edge points.

FIG. 3 (color). Left: total cross section for $\gamma_{\nu}p \rightarrow p\pi^+\pi^-$ as a function of W from CLAS at the three mentioned Q^2 intervals (see Fig. 1). The error bars are statistical only. The curves (see text) correspond to the fits (B2) (red) and (B4) (blue). Right: subdivision of the fitted cross section (B2) for $Q^2 = 0.5–0.8$ (GeV/c)2 into resonant $\Delta^+\pi^-$ (solid black line), continuum $\Delta^+\pi^-$ (dashed black line), resonant p^0p (solid magenta line), and continuum p^0p (dashed magenta line). Notice the different vertical scales.
New P13 mechanisms seen with an electromagnetic probe may be different from the assumed new state are reported in Table I (last row) and Table II (last 3 rows), respectively. A second P13 state was indeed predicted in Ref. [4], with a mass of 1870 MeV, and in Ref. [18], with a mass of 1816 MeV. The presence of a new three-quark state with the same quantum numbers as the conventional P13(1720) in the same mass range would likely lead to strong mixing. However, as mentioned above, a different isospin cannot be excluded. Yet another possibility is that some resonance parameters established in previous analyses may have much larger uncertainties than reported in the literature. In this case, outlined in our step (B), our analysis would establish new, more precise parameters for a known state and invalidate previous results.

In conclusion, in this Letter we presented data on the \(e^+p \to e^+\pi^+\pi^- \) reaction in a wide kinematic range, with higher quality than any previous double-pion production experiment. Our phenomenological calculations using existing PDG parameters provided a general good agreement with the new data, except for the structure at \(W \sim 1700 \text{ MeV} \). We explored two alternative interpretations of the data. If we dismiss previously established hadronic parameters for the P13(1720), at the same mass, with a state having the same spin/parity/isospin but strongly different hadronic couplings from the PDG state. If, alternatively, we introduce a new state in addition to the PDG state with about the same mass, spin \(\frac{1}{2} \), and positive parity, a good fit is obtained for a state having a rather narrow width, a strong \(\Delta \pi \) coupling, and a small \(\rho N \) coupling, while keeping the PDG P13(1720) hadronic parameters at published values. In either case we determined the total photocoupling at \(Q^2 > 0 \). A simultaneous analysis of single- and double-pion processes provides more constraints and may help discriminate between alternative interpretations of the observed resonance structure in the CLAS data. Such an effort is currently under way.

We acknowledge the outstanding efforts of the staff of the Accelerator and the Physics Divisions at JLab that made this experiment possible. This work was supported in part by the Istituto Nazionale di Fisica Nucleare, the U.S. Department of Energy and National Science Foundation, the French Commissariat à l’Energie Atomique, and the Korea Science and Engineering Foundation. U. T. acknowledges an “Emmy Noether” grant from the Deutsche Forschungsgemeinschaft. The Southeastern Universities Research Association (SURA) operates the Thomas Jefferson National Accelerator Facility for the United States Department of Energy under Contract No. DE-AC05-84ER40150.

Table I. PDG P13(1720) parameters from fit (B) and new state parameters from fit (C). Errors are statistical.

<table>
<thead>
<tr>
<th>Step</th>
<th>(Q^2) (GeV/c^2)</th>
<th>(\sqrt{\frac{A_{1/2}^2 + A_{3/2}^2 + S_{1/2}^2}{10^{-3}/\sqrt{\text{GeV}}} })</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2</td>
<td>0.65</td>
<td>83 ± 5</td>
</tr>
<tr>
<td>B2</td>
<td>0.95</td>
<td>63 ± 8</td>
</tr>
<tr>
<td>B2</td>
<td>1.30</td>
<td>45 ± 27</td>
</tr>
<tr>
<td>C</td>
<td>0.65</td>
<td>76 ± 9</td>
</tr>
<tr>
<td>C</td>
<td>0.95</td>
<td>54 ± 7</td>
</tr>
<tr>
<td>C</td>
<td>1.30</td>
<td>41 ± 18</td>
</tr>
</tbody>
</table>

Table II. PDG P13(1720) total photocoupling from fit (B2) and new state total photocoupling from fit (C). Errors are statistical.

Deceased.