Search for the Θ^{+} Pentaquark in the $\gamma d \rightarrow \Lambda n K^{+}$ Reaction Measured with the CLAS Spectrometer

S. Niccolai

Angela Biselli
Fairfield University, abiselli@fairfield.edu

CLAS Collaboration

Copyright American Physical Society Publisher final version available at http://prl.aps.org/pdf/PRL/v97/i3/e032001

Peer Reviewed

Repository Citation
Niccolai, S.; Biselli, Angela; and CLAS Collaboration. "Search for the Θ^{+} Pentaquark in the $\gamma d \rightarrow \Lambda n K^{+}$ Reaction Measured with the CLAS Spectrometer" (2006). Physics Faculty Publications. 76. http://digitalcommons.fairfield.edu/physics-facultypubs/76

Published Citation
Niccolai, Silvia, et al. "Search for the Θ^{+} Pentaquark in the $\gamma d \rightarrow \Lambda n K^{+}$ Reaction Measured with the CLAS Spectrometer." Physical review letters 97.3 (2006): 032001. 10.1103/PhysRevLett.97.032001

This Article is brought to you for free and open access by the Physics Department at DigitalCommons@Fairfield. It has been accepted for inclusion in Physics Faculty Publications by an authorized administrator of DigitalCommons@Fairfield. For more information, please contact digitalcommons@fairfield.edu.
Search for the Θ^+ Pentaquark in the $\gamma d \rightarrow \Lambda nK^+$ Reaction Measured with the CLAS Spectrometer

(CLAS Collaboration)

1 Institut de Physique Nucl´eaire, Orsay, France
2 INFN, Laboratori Nazionali di Frascati, 00044 Frascati, Italy
3 University of South Carolina, Columbia, South Carolina 29208, USA
4 Ohio University, Athens, Ohio 45701, USA
5 University of Glasgow, Glasgow G12 8QQ, United Kingdom
6 Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
7 Argonne National Laboratory, Argonne, Illinois 60439, USA
8 Arizona State University, Tempe, Arizona 85287-1504, USA
9 University of California at Los Angeles, Los Angeles, California 90095-1547, USA
10 California State University, Dominguez Hills, Carson, California 90747, USA
11 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
12 Catholic University of America, Washington, D.C. 20064, USA
13 CEA-Saclay, Service de Physique Nucl´ eaire, F91191 GIF-sur-Yvette, France
14 Christopher Newport University, Newport News, Virginia 23606, USA
15 University of Connecticut, Storrs, Connecticut 06269, USA
16 Edinburgh University, Edinburgh EH9 3JZ, United Kingdom
17 Florida International University, Miami, Florida 33199, USA
18 Florida State University, Tallahassee, Florida 32306, USA
19 The George Washington University, Washington, D.C. 20522, USA
20 Idaho State University, Pocatello, Idaho 83209, USA
21 INFN, Sezione di Genova, 16146 Genova, Italy

0031-9007/06/97(3)/032001(6) 032001-1 © 2006 The American Physical Society

PRL 97, 032001 (2006) PHYSICAL REVIEW LETTERS week ending 21 JULY 2006
For the first time, the reaction $\gamma d \rightarrow \Lambda n K^+$ has been analyzed in order to search for the exotic pentaquark baryon $\Theta^+(1540)$. The data were taken at Jefferson Laboratory, using the Hall-B tagged-photon beam of energy between 0.8 and 3.6 GeV and the CEBAF Large Acceptance Spectrometer (CLAS). No statistically significant structures were observed in the nK^+ invariant-mass distribution. The upper limit on the $\gamma d \rightarrow \Lambda \Theta^+$ integrated cross section has been calculated and found to be between 5 and 25 nb, depending on the production model assumed. The upper limit on the differential cross section is also reported.

Since the first publication of the observation of the new state Θ^+ (1540) in the year 2003 [1], the possible existence of exotic baryons that have quantum numbers which require a minimum quark content of $qqqq$ has generated tremendous interest in the physics community. Although the idea of exotic pentaquark states was introduced originally in the early 1970s, the specific prediction for both a second generation of dedicated, high-statistics experiments. The CLAS Collaboration is currently pursuing high-statistics searches for the Θ^+ through photoproduction on hydrogen [31] and deuterium [32] targets and in various final states.

Searching for the Θ^+ through photoproduction from a deuterium nucleus together with a Λ hyperon has various experimental advantages. The main advantage of this reaction channel is that there are no competing channels to remove in the final state, while at the same time it excludes kinematical reflections [33]. In fact, while in other channels such as pK^+K^-n or pK^+K^0p the production of heavy mesons decaying into two kaons can simulate a peak in the NK mass spectrum as a result of the reduction of the phase space due to the experimental acceptance, in the ΛnK^+ final state the presence of only one kaon excludes such an effect. Moreover, the presence of the Λ provides a “strangeness tag” ($S_\Lambda = -1$) in both the nK^+ and the pK^0 decay modes. Figure 1 shows a possible diagram that could lead to Θ^+ production via a two-step process. The photon interacts with one of the nucleons in the deuteron and produces a Λ and a kaon. The Λ leaves the target nucleus, while the K rescatters on the spectator nucleon to form a Θ^+. The rescattering probability is determined by the deuteron wave function and the KN scattering cross section. This kind of process has been taken into account by Guzey [34] to calculate the total and differential cross section for the $\gamma d \rightarrow \Lambda \Theta^+$ reaction. Also, calculations of the KN rescattering amplitude and the probability of production of a narrow resonant state have been performed by Laget [35].

We have searched for the Θ^+ in the $\gamma d \rightarrow \Lambda n K^+$ reaction using the G10 data [28,32] that were taken with the
CEBAF Large Acceptance Spectrometer (CLAS) (the results of our analysis on the \(pK^0 \) mode, currently underway, will be presented in an upcoming publication). The data were taken during spring 2004 with the Hall-B tagged-photon beam [36] of energy between 0.8 and 3.6 GeV, impinging on a 24-cm-long liquid-deuterium target. Two different values for the CLAS torus magnetic field [37] were chosen for the two halves of the experiment. The run with a lower magnetic field had higher acceptance for negative particles in the forward direction and has been used for this analysis. For this part of the experiment, an integrated luminosity of \(31 \text{ pb}^{-1} \) has been achieved. The run with a higher magnetic field was taken to reproduce the same acceptance and track resolution of the data used for the CLAS published result in the \(pK^+K^-n \) channel [4] but had very low acceptance for the \(\gamma d \rightarrow \Lambda nK^+ \) reaction, giving approximately a factor of 6 less statistics than the low-field run, and was therefore not used for the analysis discussed in this Letter.

Since CLAS is mainly efficient for the detection of charged particles, the \(\Lambda \rightarrow p\pi^-K^+ \) decay mode was chosen. The final state was determined exclusively, identifying the 3 charged particles (\(p, \pi^-, K^+ \)) through their momenta and times of flight measured in CLAS, reconstructing the neutron with the missing mass technique (Fig. 2, top plot) and the \(\Lambda \) via the \(p\pi^- \) invariant mass (Fig. 2, bottom plot). Selection cuts 3\(\sigma \) wide were placed around both the neutron peak in the invariant mass and the \(\Lambda \) peak in the invariant mass, as shown by the dotted lines in Fig. 2. The value of \(\sigma \) was determined by a Gaussian fit to the experimental distributions.

The \(p\pi^-nK^+ \) final state can also arise from the \(\gamma d \rightarrow \Sigma^-pK^+ \) channel, when the \(\Sigma^- \) decays weakly into \(n\pi^- \). In order to study this possible source of background, the distribution of the missing mass of the \(pK^+ \) system has been studied. As expected, the \(\Sigma^- \) peak (Fig. 3, crosses) disappears after applying the \(\Lambda \) selection cut on the \(p\pi^- \) invariant mass (circles).

After selecting the \(\Lambda nK^+ \) events, the \(\Theta^+ \) signal was searched for in the invariant mass of the \(nK^+ \) system. The result obtained is shown in the top plot in Fig. 4. Since the \(nK^+ \) mass spectrum does not show any evident structure, two kinds of kinematical cuts were subsequently imposed based on the model of Ref. [34] in order to try to enhance a possible \(\Theta^+ \) signal over the nonresonant \(nK^+ \) background: (i) “non-spectator-neutron cuts,” where the nonresonant
and results. In this procedure, the measured momenta and neutron momentum (p_n) rapidly with increasing photon energy. Several cuts on the t-momentum appear in the nK^+ nominal value. The nK^+ background can be suppressed by removing the events in which the neutron is a spectator, having momentum given by the Fermi-momentum distribution in the deuteron, and (ii) “photon-energy cuts,” since, according to the model [34], the $\gamma d \rightarrow \Lambda \Theta^+$ cross section decreases rapidly with increasing photon energy. Several cuts on the neutron momentum (p_n) and on the photon energy (E_γ) have been tried. However, also under these stringent kinematic conditions, no narrow peaks having statistical significance can be observed in the mass region around 1.54 GeV/c2, indicated by the arrows. The third-order polynomial fit used for the upper limit estimate is shown.

Since no structures having relevant statistical significance appear in the nK^+ invariant mass for any of the kinematic cuts that have been studied, the upper limit on the cross section has been calculated for $p_n > 0.2$ GeV/c and $E_\gamma < 1.6$ GeV. For each bin in $M(nK^+)$, the number of events above the background was calculated as follows: The nK^+ distribution was fitted with a third-order polynomial (as shown in the bottom plot in Fig. 4), and then a second fit was performed by fixing the third-order polynomial and adding a Gaussian curve having a fixed centroid at the $M(nK^+)$ bin under examination and a width equal to 5 MeV/c2. This width corresponds to the invariant-mass resolution of CLAS determined via Monte Carlo simulations. Only the amplitude of the Gaussian was left as a free parameter for the fit. The yield above or below the curve describing the background is therefore given by the integral of the Gaussian. The upper limit at the 95% confidence level on the yield was calculated using the Feldman-Cousins method [38]. The acceptance has been computed with the aid of a Monte Carlo simulation reproducing the response of CLAS, with three different models used to generate the ΔnK^+ final state: (a) a two-body ($\Lambda \Theta^+$) phase space, followed by the decay $\Theta^+ \rightarrow nK^+$, with an energy-independent cross section and a bremsstrahlung photon-energy distribution; (b) a ΔnK^+ final state for which the kinematical variables are tuned to match the experimental data; and (c) a two-body ($\Lambda \Theta^+$) final state based upon the model of Guzey [34], followed by the decay $\Theta^+ \rightarrow nK^+$. The integrated acceptances obtained with models (a) and (b) are comparable and are of the order of 0.5%. Model (c) produces most of the Δ’s (i.e. π^-s) in the very forward direction, where CLAS has no acceptance for negative particles, and thus it gives an integrated acceptance about a factor of 5 smaller than for models (a) and (b). Therefore, the integrated acceptance is strongly model dependent. The $\Lambda \rightarrow p \pi^- \phi$ branching ratio (64%) was included in the calculation of the acceptance, as well as the Θ^+ decay branching ratio (50%). The photon flux was measured by integrating the tagged-photon rate during the data-acquisition livetime. The tagging efficiency was measured during dedicated low-flux runs, using a lead-glass total-absorption detector [36]. The resulting upper limit on the $\gamma d \rightarrow \Lambda \Theta^+$ total cross section is shown, as a function of $M(nK^+)$, in the top plot in Fig. 5. In the mass range between 1.52 and 1.56 GeV/c2, the upper limit is 5 nb. Here the acceptance obtained with model (a) has been used. Adopting model (c) to extract the total cross section gives an upper limit about a factor of 5 larger than the one shown in Fig. 5.

The upper limit on the $\gamma d \rightarrow \Lambda \Theta^+$ differential cross section as a function of the momentum transfer t, with $t = (p^2_\gamma - p^2_n)$, has also been calculated, again for $p_n > 0.2$ GeV/c and $E_\gamma < 1.6$ GeV. The data were divided into five t bins, as shown in the lower plot in Fig. 5. For each t bin, the upper limit on the cross section was extracted according to the procedure described above for the total cross section, using the acceptances given by models (a) (triangles) and (c) (circles). The maximum value of the upper limit in the $M(nK^+) = 1.52-1.56$ GeV/c2 range for each t bin was then used to get the upper limit on the differential cross section, as shown in the bottom plot in Fig. 5. It varies between 0.5 nb/(GeV/c2) at the highest values of $-t$ and 30 nb/(GeV/c2) as t approaches 0. The kinematic region
at small t values, however, corresponds to the forwardmost part of the spectrometer, where the acceptance drops to zero. This explains the higher value on the upper limit for the last bin in Fig. 5.

In conclusion, for the first time a search for the exotic pentaquark Θ^+ in the $\gamma d \rightarrow \Lambda nK^+$ reaction was performed. The high-statistics CLAS-G10 data were used for this search, and the final state was cleanly identified with a small background contribution. No statistically significant signal was observed in the nK^+ invariant-mass distribution, even under several different kinematic conditions. Upper limits on the total cross section were calculated in the mass range between 1.52 and 1.56 GeV/c^2 and for $p_n > 0.2$ GeV/c and $E_\gamma < 1.6$ GeV and found to be 5 nb when computed with the phase-space Monte Carlo acceptance, while this number increases by a factor of 5 if the Guzey model is used. The upper limit on the differential cross section as a function of t has also been extracted and found to be between 0.5 and 30 nb/(GeV/c)2. Assuming the Λ t-channel production mechanism and the cross section estimates proposed by Guzey, these upper limits exclude the existence of a pentaquark having an intrinsic width greater than 10 MeV in the mass range between 1.52 and 1.56 GeV/c^2.

We thank the staff of the Accelerator and Physics Divisions at Jefferson Laboratory, who made this experiment possible. Acknowledgments for the support of this experiment go also to the Italian Istituto Nazionale di Fisica Nucleare, the French Centre National de la Recherche Scientifique and Commissariat a l’Energie Atomique, the United Kingdom Engineering and Physical Science Research Council, the U.S. Department of Energy and the National Science Foundation, and the Korea Research Foundation. The Southeastern Universities Research Association (SURA) operates the Thomas Jefferson National Accelerator Facility under U.S. Department of Energy Contract No. DE-AC05-84ER40150.

*Current address: University of New Hampshire, Durham, NH 03824-3568, USA.
†Current address: Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA.
‡Current address: Catholic University of America, Washington, D.C. 20064, USA.
§Current address: Physikalisches Institut der Universitaet Giessen, 35392 Giessen, Germany.
‖Current address: Edinburgh University, Edinburgh EH9 3JZ, United Kingdom.
¶Current address: Current address: University of Massachusetts, Amherst, MA 01003, USA.
[31] M. Battaglieri et al., Jefferson Laboratory experiment E04-021.