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In a previous article [Phys. Rev. E 60, 1799 (1999)], the authors considered & model Landau free energy that

ks explained the ferriclinic phases of chiral smectic liquid crystals as a series of short period helical modulations..
In this paper we begin with a physically more realistic, more microscopic interlayer free energy and show how

our previous work can be derived using only simple short-ranged interactions. We then discuss what additional
information this provides about the Landau coefficients uséd previously to'construct the phase diagram for the

heliclinic phases of chiral smectic liquid crystals. Finally, we investigate a means for explicitly including

chirality in our model. [S1063-651X(99)02412-5]

PACS number(s): 64.70.Md, 61.30.Cz
1. INTRODUCTION

In smectic liquid crystals, the molecules self-assemble
into periodic layered structures. By convention, the layer
normal defines the z axis of the system. The molecules of the
liquid crystal are anisotropic which often leads to pro-
nounced birefringence effects. For the systems we will con-
sider, the molecules can be viewed as elongated ellipsoids, in
which case the long axis of the molecule coincides with the
extraordinary index of refraction.

The orientation of the liquid crystal molecules is repre-

sented by a unit vector n called the director. By convention,
the director is along the optical axis of the molecule. In the
smectic-A (Sm-A) phase, the director is parallel to the layer
normal. In the Sm-C phases, the director tilts and develops a

component perpendicular to the layer normal. A tilt vector ¢
can be used to represent this tilt. The tilt vector is. con-
strained to lay in the plane of the smectic layers and its
magnitude is equal to the projection of the director onto the
plane of the layers,

le|=|zxn].

In the nonchiral Sm-C phase, the molecules, on average, tilt
in the same direction throughout the sample. In a chiral ma-
terial, on the other hand, as one moves along the z axis the
tilt direction precesses about the layer normal with a period
much larger than the layer spacing. This is known as the
Sm-C* phase. Because these molecules lack a center of in-
version, the Sm-C* phase usually has a spontaneous ferro-
electric polarization [1]. This polarization couples strongly to
an applied electric field which has applications in the manu-
facture of optical devices.

Ferroclinic phases (also known as synclinic phases) are
liquid crystal phases where the average tilt vector points in
the same directionfrom layer to layer (ignoring any rotations
due to the chirality). In antiferroclinic (syndioclinic) phases,
on the other hand, the tilt vector changes direction between

adjacent layers ¢ = ¢ 4+1. Ferriclinic phases are the inter-
mediate case where the tilt vector is neither parallel nor an-
tiparallel to the adjacent layers. In chiral materials, these
phases also possess spontaneous polarizations; chiral ferro-
clinics are necessarily ferroelectric. In a previous paper [2],
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they are modeled for the ferriclinic smectic phases as a series
of short period helical modulations about the layer normal in
the context of a Landau free energy. Such a heliclinic phase
is shown.in Fig. 1. The tilt in each of five successive layers
is illustrated by drawing an arrow on a cone. The particular
phase illustrated is a chiral phase with a period of four lattice
spacings. A variety of other phases can exist, depending on
the period with which the director repeats, and the nature of
the modulation within this period. From this, under certain
simplifying assumptions, we derived the phase diagram and
characterized the various phases.

On doing so we found a number of ferrielectric phases.
One bore a strong resemblance to the smectic-C,, phase. An-
other, which consisted of a helical modulation with a period
of three times the layer spacing, may have been experimen-
tally observed by Mach and collaborators [3]. In addition,
our model predicts two other ferriclinc phases which do not
seem to correspond to any phases yet observed. Finally, we
demonstrated the importance of mode locking between dif-
ferent Fourier modes in determining the phase diagram.

While the Landau free energy formulation we used is con-
venient to work with, it is not always the most satisfying
approach. In particular, the Landau free energy gives very
few clues as to the sign or magnitude of the various phenom-
enological coefficients except what can be inferred from
physical arguments. Being a phenomenological theory, no
indication is provided as to the physical origin of the various
terms either. Finally, irtour previous investigations [2], while
we implicitly assumed the existence of chirality, we did not
treat it explicitly. In this paper we will attempt to remedy
these shortcomings and to provide a more concrete frame-
work for the heliclinic phases.

II. AN INTERLAYER FREE ENERGY

Our starting point for improving our understanding of the
heliclinic phases is an interlayer free energy with interactions

VIVYYY

FIG. 1. Illustration of a heliclinic phase (¢=2/4a in this ex-
ample).
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between pairs of molecular tilts in smectic layers

1 - - . e B
= 5 E (Jn,m(cn'cm)+‘,r’1,m(cnxcm) 'Z)
m,n

1 - s
+ Z 2 (Vn‘m(cn' Cm)2
m,n

+Vh (Cn ) (Cm-Em))+0O(cO). (1)

Here, J,, contains the nonchiral interaction (e.g., steric
forces, van der Waals, elastic, dipole-dipole, etc. [4]) be-
tween molecules and J, . contains the chiral interactions.

The tilt vector for a given molecule # is given by E,,. Vam
and V, , are the fourth-order interaction terms. We assume
that any chiral fourth-order terms are small-enough that they
may be safely neglected. We also assume that the long-range

fourth-order terms (¢y+ €1)(Cp- Cpy) With k% [#n may also be
safely neglected. Finally we assume, as is commonly done
when modeling phase transitions, that.the second-order terms
vary with temperature while the fourth-order terms are tem-
perature independent.

Based on the symmetry of real systems, all the coupling
terms must be translationally invariant. Further, only terms
invariant under the interchange n«m cah contribute to the
free energy, from which it immediately follows that

Tnm=Imns

1
nm Jmn’

Vn,m= Vm,n s
)
Vn,m_ Vm,n

After Fourier transforming the interlayer free energy (1)
and dropping the sixth-order terms, we find

1 e e e
F=E; Jq(O'k'O'_k)+Jq(0'kX0'_k)

¢
+'4_ E (V"k k"+V—k k’)
kk' k"

X(O-k'o-k’)(o-k”'U—k—k’—k”)'" (3)

As a consequence of Fourier transforming, r;'k is now an
average tilt vector. From Eq. (2), J, must be real after Fou-
rer transforming, as must V_;_z» and V._;_,». The chiral
interaction J on the other hand, must be imaginary.

Since thevmteractlons are expected to be short ranged, we
expand the various coefficients in terms of the layer spacing
[or, equivalently, in terms of exp(ig)]. For the second-order
interaction term, since the interactions are short ranged, we
include terms up to next—nearest neighbors in the nonchiral
interactions [5,6]

~ J,=Jo+ Ty cos(g)+J, cos(2q) )

and up to-neatest neighbor in the chiral interactions
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Ty=iJ} sin(q), 5)

where J; is now a real number. Finally, expanding the
fourth-order interaction terms up to nearest neighbors yields

V_k_,knz V0+ Vl COS(k‘*‘k")' ‘ (6)
and

V_k_kl=V(,)+V; COS(k+k'). (7)

In order that the free energy of the system remain
bounded from below, we must have

Vo+ V>0, (8)
Vo+Vy+ V>0, 9

and
Vo+ Vy+Vi>0. (10)

In practice, it seems probable that V;, and Vg will have ap-
proximately the same order of magnitude as they cannot be
rigorously distinguished from one another. Interlayer cou-
plings are expected to be significantly smaller than intralayer
interactions, however, so we expect that V>V~ V{ .

Substituting (4)—(7) into the interlayer free energy (3)
gives

F=

NLD—A

'k (Jo+Jcos(q)+HJ,cos(2g)]

X (Gy 0_ ) +if | sin(g) (X T_)

1 ~
+7 > [Pot+ Vi cos(k+k")+ V), cos(k+k")]
k,k’,k"t

X(Gp O ) (Opre O — i — i) (11)

where Vy=V,+ V§. To bring out the essential features, we
first define a few new coefficients. Looking at the second-
order term in the interlayer free energy, we immediately see
that it can easily be simplified into

F(2)=§ agl ol (12)
where

a=Jo+J, cos(k)+iJ{(?kxﬁ_k)sm(k)+chos(2k)( )
L (18

and the unit vector sk is defined as sk—o-/ |&]. Next, we
define the fourth-order coefficients:

by=2[Vo+cos(k)2V;+V11, o (14)
g)]’c=‘70":V1+COS€2k)V{,3 ; ‘;}J (15)
i =Vot+V cos(k+k')+ V], (16)
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a7) TABLE 1. Equivalence between (phenomenological) Landad
coefficients and (interlayer) Landau-Ginzburg coefficients. Values
of k given are those appearing in the phenomenological Landau

C,:,k,=Vo+ Vy+Vycos(k+k'),

theory.
Ck I=Vo+cos(2k)V,+cos(2k)V;. (18)
" Landau Landau-Ginzburg
: a,, as a, k=02m/3
il This leaves us with a more manageable expression for the by, bs by k=02%/3
’ fourth-order terms in the interlayer free energy . b b, k=2w/3
‘ Cy13 C,i‘k, k,k'=0,21T/3
I‘ % C;S Cix! k,k’=0,27T/3
I ot * 3
1L > >~ ‘ c < ki =(0.27/3
g F(4)=; (bk|0k|4+b1’c|0k'0k|2) Lo opl k,y  Kmi=(0.27/3)
il 22 12 g . . ..
+2 2 (plodlovl e o aul F=3 aloi+3 (bloi+b}lde- )
kl k k
| .
! * ; T mu)(o" mlz) +2 2 (erploow?+op ol 0wl
JI lkmll = kaZ[ k |k’|*lk‘ . > “
i + dy; k', k"(aJk ‘Tk')(‘fk" G_gprr).  (19) + ¢ (O ) (0% O—3p)
i , k' B g™
i ’ g o 1w
I .
H p P oM f f o - - -
i il + 2 dk’kr’kn(o'k'O'kl)(o'kn'a'_k_klk"). (22)

b The final prifried Sufnmation contains only those combina- kk' k"
|| tions of &, k’, and k" 'that mix three distinct Fourier modes

l (i.e., those terms not included elsewhere in F(4)). The sum
! w over k,,;; and k,,;,, on the other hand, contains only those
:‘ pairs of wavevectors that satisfy the mode lock conditions Compare Eq. (22) with our previous formulation of the
;ﬁ Landau free energy in [2]

III. COMPARISON WITH LANDAU FREE ENERGY

3kmin— K2 =0, (20) F=Fy+F,,,

5 ' W Fo=a,X?+a;Z%+ b, X*+ b3 2%+ ¢, X*Z2,
. 3k tkpp=2mn; n=*x1,%2 .. .. 21) (23)
: Fip=—b3Z%sin®(2a)cos?(y) +czcos*(a)X?22

The first condition (20) reflects the origin of the mode lock — €1333XZ% cos(a) V1 —sin*(2 @) cos?(y),

terms as the (G- 04)(0 ;) term of the free energy (3).
The second mode lock condition (21) is analogous to the
condition for conserving momentum in an Umklapp process
in a crystal. In an Umklapp process, electrons are able to @ :
“hop’’ across from one zone boundary to another while still parameter. Examining the two free energies term-by-term,
conserving momentum to within a reciprocal lattice vector. =~ On€ Se€es that the Landau coefficients a,, b, , and c, q' A€
Similarly, in heliclinic phases we are dealing with rotations given above by Egs. (13), (14), and (16), respectively. Fur-
in a plane, which are only specified up to a factor of 24.  ther, the Landau ceefficients by and cy333 in [2] are given
Thus, a combination of rotations which advances the phase ~ above by Eqs (15) and (18). Both of the Landau coefficients
by 2 is allowed the same as if the wave vectors had CZ g and cq g are given above by Eq. (17). ‘The d coeffi-
summed to zero. Since we are only keeping terms up to  cients have no counterparts in the Landau free energy. These
fourth order in the interlayer free energy, there are only two  terms though, since they couple three different-wave, vectors
pairs of modes that satisfy the mode lock conditions (20) and  are not likely to play a significant role in determining the
(21). Those pairs are (/3,7), and (27/3,2 7). Again, since  phase diagram of the system. These results are summarized
rotations in a plane are always modulo 27, the second pairis  in Table L "
equivalent to (27/3,0). The pair (7/2,7/2) does not satisfy

where X is the magnitude of the ferroclinic order parameter,
Z is the magnitude of the 27/3 heliclinic order parameter,
and « and v are angles related to the 24r/3 heliclinic order

Fhe ﬁrs? mode !ock condition (20), but could also possess IV. PHYSICS BEYOND THE LANDAU THEORY
interesting physics.

Substituting these new coefficients and adding together Now that we have more physical expressions (13)—(18)
Eqs. (12) and (19) gives the final form for the interlayer free ~ for the various Landau coefficients in [2], we are able to
energy make several additional comments about their relative mag-
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" FIG. 2. Phase diagram as calculated prevxously “Region I and II
are the the isotropic (Sm-A) and ferrotlinic ' (Sm-C) phases re-
spectively. Region IIT is a chiral heliclinic phase, region IV is a
planar heliclinic phase (similar to the Sm-C;, phase),.dnd region V
is a second chiral heliclinc phase. Dotted liné§* are the coordinate
axes, solid lines are continuous transitions, heavy dashed lines are
discontinuous transitions.

nitudes and the relationships between}ythem. Looking at the
second-order coefficient a;, one immediately!sees a possible
competifion between nearest neighbor .and next-nearest
neighbor if J; and J, have different signs.'It"is this same
competition that drives the phase transitions i the discreet
phenomenological models of Rovsek, CepiC, and Zeks [5,6].

Ji, though, also plays an important role in determining
the layer-by-layer structure of the system. As an odd func-
tion of g, the J| term causes the coefficient a, to distinguish
between modes with helicity g and, modes with helicity
—g. This is significant because all’ ‘the other ‘interactions in
the interlayer free energy are even functlons of g, While one
would naturally expect on physical grounds fhat' the chiral
term is responsible for breaking the degeneracy between g
and —gq, this was not readily apparent in our previous Lan-
dau free energy [2]. There, symmetry breaking between g
and — g had to be introduced by fiar.

Next, looking at the definitions (16)=(18) one sees that
the Landau coefficients ¢,3, ¢|3, and 1333 are all positive
numbers. While this is of only minor importance in deter-
mining the phase diagram, this too is a result that cannot be
obtained from the form of the Landau free energy -alone.

Finally, looking at b; in Eq. (15) one sees, given the
bounds on the various terms in Egs. (8) and (9), that b, is
always positive. Consequently, the parameter cos(y) of Eq.
(23) is permitted to take on the values of zero and one [if by
Were negative, cos(7y) would be identically zero]. In our pre-
vious paper [2] we considered two sequences of phase tran-
sitions since we were unable to determine the sign of by .
Starting from the interlayer free energy, we see that the sec-
ond, richer, sequence of phase transitions (reproduced in Fig.
2) is the correct sequence. This again is a result that cannot
be derived from the Landau free energy formulation alone.

V. CHIRALITY

Spontaneous polarization, as observed in all known ferri-
electric phases, can only occur in systems that lack a center
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of inversion. In liquid crystals, this means that the molecules
are chiral. In a chiral system, as mentioned previously, the
orientation of the liquid erystal rotates slowly throughout
space. The formulation we have used for the interlayer free
energy, however, does not yet-account for this. In this section
we will outline the effects that chirality has on our model.
At a microscopic level, chirality can be viewed as a layer-
by-layer rotation of the coordinate system. To correctly ac-
count for this rotation, though, it is easier to work with the

complex field ¢ instead of the usual Cartesian vectors o
where

l//lEU'l';'i'iO'l‘}?.

Rotations of o by an angle QO betwegn adjacent layers simply
changes the complex phase of ¢ ,

, ‘/f1+1=e'Q¢l,

which is the chief virtue of this representation. Writing the

+

- nonchiral free energy (1) in terms of ¢ and Fourier trans-

forming, we now find

1 ,
F=5 2 i) =it}

1
+7 D (Voo Vopopr)
k&' k"

XU o W g - (24)

In the above equation (24) and for the rest of this paper, we
will use the convention that i is the complex conjygate of
the Fourier transform [i.e., ¢ =(Z, 7 e'kly* ]

If the chiral interactions (via J') are small then the chiral
solutions should be equal to the nonchiral solutions plus
some small chiral perturbation. Specifically, by calculating
the ¢ for the nonchiral case and then adding some constant
Q=2a/P to all the wave vectors in Eq. (24) we should be
able to find the new chiral solutions using perturbation
theory (to first order).

Upon doing so, however, it is apparent that the fourth-
order term has only a weak dependence on the wave vector
Q since we expect intralayer interactions (¥,) to be signifi-
cantly stronger than the layer-layer couplings (V; and V}) in
the fourth-order terms. Therefore, this dependence is small
and can safely be ignored. The remaining Q-dependent parts
of the free energy are

(25)

1
Fo=3 ; (Je+o~

where i, is obtained by minimizing the free energy of the
nonchiral system. This portion of the free energy is easily
minimized with respect to Q, from which we find

Mrig
3%

‘9]k+Q

)l¢’k+Ql =0. . (26)

As we demonstrated in our initial paper [2], some of the
heliclinic phases are confined to the XZ plane and thus are
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achiral.-Others, though, trace a helix along the z axis and are
thus manifestly <hiral (e.g., they are asymmetric under z—
+7). If the system is in a achiral phase then 6J;+ 9 /8Q is an
odd function of Q and, so we must have dJ rr0!9Q
Q641 0!3Q%| g=0). Similarly, since it is an even func-
tion of Q, 8J;4 o/ JQ=~const. These two expressions can be
substituted back into Eq. (26) and the resulting equation
solved for Q which yields

i3 [Wr ol 0Tk gl 90 _
0~ : @7
; |+ g2 k40190

0=0

This* implies that the heliclinic state should have a pitch of
the same order of magnitude as that of the ferroclinic state.
As the second derivative of J cannot be predicted from the
properties of the ferroclinic phase, however, no quantitative
predictions for the pitch can be made.

If, on the other hand, the system is in a chiral phase (spe-
cifically, phases III and V in Fig. 2), the sitnation becomes
more complicated. Since ¥ is not equivalent to ¢, for
nonzero k, there is no reason to assume that =48J/3Q and
34J'19Q are the same at k and —k. Therefore, there is no
reason to assume that Q goes to zero as J ! goes to zero. This,
of course, stands to reason since as a chiral heliclinic phase,
the system has a spontaneous ‘pitch’” of its own. Therefore,
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we expect that this phase will have a chiral pitch rather larger
than the pitch of the ferroclinic phase and that the sign of this
pitch will be chosen by the sign of the chiral J' term.

V1. SUMMARY

In conclusion, we have shown that it is possible to con-
struct the Landau free energy used in our initial paper [2]
starting from short-ranged interlayer interactions. Using a
Landau-Ginzburg free energy, however, we are able to relate
the various Landau coefficients to physical properties of the
liquid crystal instead of leaving them as simple phenomeno-
logical parameters. This also allows us to make much better
estimates of the sign and of the relative magnitude of the
various coefficients than was possible from just the Landaun
free energy. Finally, we extended our model to include the
effects of the natural chiral pitch. Our analysis of the intrin-
sic chirality is unsophisticated, but it nevertheless permits us
to make rough estimates for the pitch in the achiral heliclinic
phases and to make some qualitative statements about the
effects of chirality in the chiral heliclinic phases.
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