- Providing an accessible account of the theoretical foundations
- Covering topics not found in competing works: Free groups, module theory, extensions of rings
- Also including cryptography
- Comes with end of chapter problems

Aims and Scope:

A new approach to conveying abstract algebra, the area that studies algebraic structures, such as groups, rings, fields, modules, vector spaces, and algebras, that is essential to various scientific disciplines such as particle physics and cryptology. It provides a well written account of the theoretical foundations; also contains topics that cannot be found elsewhere, and also offers a chapter on cryptography. End of chapter problems help readers with accessing the subjects.

This work is co-published with the Heldermann Verlag, and within Heldermann's Sigma Series in Mathematics.

]]>Quantum computing is a beautiful fusion of quantum physics and computer science, incorporating some of the most stunning ideas from twentieth-century physics into an entirely new way of thinking about computation. In this book, Chris Bernhardt offers an introduction to quantum computing that is accessible to anyone who is comfortable with high school mathematics. He explains qubits, entanglement, quantum teleportation, quantum algorithms, and other quantum-related topics as clearly as possible for the general reader. Bernhardt, a mathematician himself, simplifies the mathematics as much as he can and provides elementary examples that illustrate both how the math works and what it means.

Bernhardt introduces the basic unit of quantum computing, the qubit, and explains how the qubit can be measured; discusses entanglement—which, he says, is easier to describe mathematically than verbally—and what it means when two qubits are entangled (citing Einstein's characterization of what happens when the measurement of one entangled qubit affects the second as “spooky action at a distance”); and introduces quantum cryptography. He recaps standard topics in classical computing—bits, gates, and logic—and describes Edward Fredkin's ingenious billiard ball computer. He defines quantum gates, considers the speed of quantum algorithms, and describes the building of quantum computers. By the end of the book, readers understand that quantum computing and classical computing are not two distinct disciplines, and that quantum computing is the fundamental form of computing. The basic unit of computation is the qubit, not the bit.

]]>Book description: This volume contains the proceedings of three special sessions: Algebra and Computer Science, held during the Joint AMS-EMS-SPM meeting in Porto, Portugal, June 10-13, 2015; Groups, Algorithms, and Cryptography, held during the Joint Mathematics Meeting in San Antonio, TX, January 10-13, 2015; and Applications of Algebra to Cryptography, held during the Joint AMS-Israel Mathematical Union meeting in Tel-Aviv, Israel, June 16-19, 2014. Papers contained in this volume address a wide range of topics, from theoretical aspects of algebra, namely group theory, universal algebra and related areas, to applications in several different areas of computer science. From the computational side, the book aims to reflect the rapidly emerging area of algorithmic problems in algebra, their computational complexity and applications, including information security, constraint satisfaction problems, and decision theory. The book gives special attention to recent advances in quantum computing that highlight the need for a variety of new intractability assumptions and have resulted in a new area called group-based cryptography.

]]>Suitable for a two-semester introduction to PDEs and Fourier series for mathematics, physics, and engineering students, the text teaches the equations based on method of solution. It provides both physical and mathematical motivation as much as possible. The author treats problems in one spatial dimension before dealing with those in higher dimensions. He covers PDEs on bounded domains and then on unbounded domains, introducing students to Fourier series early on in the text.

Each chapter’s prelude explains what and why material is to be covered and considers the material in a historical setting. The text also contains many exercises, including standard ones and graphical problems using MATLAB. While the book can be used without MATLAB, instructors and students are encouraged to take advantage of MATLAB’s excellent graphics capabilities. The MATLAB code used to generate the tables and figures is available in an appendix and on the author’s website. -- Publisher description.

]]>