Encapsulating cytochrome c in silica aerogel nanoarchitectures without metal nanoparticles while retaining gas-phase bioactivity

Document Type

Article

Publication Date

2016

Abstract

Applications such as sensors, batteries, and fuel cells have been improved through the use of highly porous aerogels when functional compounds are encapsulated within the aerogels. However, few reports on encapsulating proteins within sol–gels that are processed to form aerogels exist. A procedure for encapsulating cytochrome c (cyt. c) in silica (SiO2) sol-gels that are supercritically processed to form bioaerogels with gas-phase activity for nitric oxide (NO) is presented. Cyt. c is added to a mixed silica sol under controlled protein concentration and buffer strength conditions. The sol mixture is then gelled and the liquid filling the gel pores is replaced through a series of solvent exchanges with liquid carbon dioxide. The carbon dioxide is brought to its critical point and vented off to form dry aerogels with cyt. c encapsulated inside. These bioaerogels are characterized with UV-visible spectroscopy and circular dichroism spectroscopy and can be used to detect the presence of gas-phase nitric oxide. The success of this procedure depends on regulating the cyt. c concentration and the buffer concentration and does not require other components such as metal nanoparticles. It may be possible to encapsulate other proteins using a similar approach making this procedure important for potential future bioanalytical device development.

Comments

Copyright 2016 JoVE

Publication Title

Journal of visualized experiments: JoVE

Published Citation

Harper-Leatherman, Amanda S., Elizabeth R. Pacer, and Nina D. Kosciuszek. "Encapsulating cytochrome c in silica aerogel nanoarchitectures without metal nanoparticles while retaining gas-phase bioactivity." Journal of visualized experiments: JoVE 109 (2016). doi: 10.3791/53802

DOI

10.3791/53802

Share

COinS