A Computational Approach for Understanding the Interactions between Graphene Oxide and Nucleoside Diphosphate Kinase with Implications for Heart Failure
Document Type
Article
Publication Date
1-23-2018
Abstract
During a heart failure, an increased content and activity of nucleoside diphosphate kinase (NDPK) in the sarcolemmal membrane is responsible for suppressing the formation of the second messenger cyclic adenosine monophosphate (cAMP)—a key component required for calcium ion homeostasis for the proper systolic and diastolic functions. Typically, this increased NDPK content lets the surplus NDPK react with a mutated G protein in the beta-adrenergic signal transduction pathway, thereby inhibiting cAMP synthesis. Thus, it is thus that inhibition of NDPK may cause a substantial increase in adenylate cyclase activity, which in turn may be a potential therapy for end-stage heart failure patients. However, there is little information available about the molecular events at the interface of NDPK and any prospective molecule that may potentially influence its reactive site (His118). Here we report a novel computational approach for understanding the interactions between graphene oxide (GO) and NDPK. Using molecular dynamics, it is found that GO interacts favorably with the His118 residue of NDPK to potentially prevent its binding with adenosine triphosphate (ATP), which otherwise would trigger the phosphorylation of the mutated G protein. Therefore, this will result in an increase in cAMP levels during heart failure.
Publication Title
Nanomaterials
Repository Citation
Ray, Anushka; Macwan, Isaac; Singh, Shrishti; Silwal, Sushila; and Patra, Prabir K., "A Computational Approach for Understanding the Interactions between Graphene Oxide and Nucleoside Diphosphate Kinase with Implications for Heart Failure" (2018). Engineering Faculty Publications. 309.
https://digitalcommons.fairfield.edu/engineering-facultypubs/309
Published Citation
Ray, Anushka, Isaac Macwan, Shrishti Singh, Sushila Silwal, and Prabir Patra. “A Computational Approach for Understanding the Interactions Between Graphene Oxide and Nucleoside Diphosphate Kinase with Implications for Heart Failure.” Nanomaterials 8, no. 2 (January 23, 2018): 57. doi:10.3390/nano8020057.
DOI
10.3390/nano8020057
Peer Reviewed
Comments
© 2018 by the authors.
A link to freely available content has been provided.