Document Type

Article

Article Version

Post-print

Publication Date

2006

Abstract

We develop the basic representation theory of all quantum groups at all roots of unity (that is, for q any root of unity, where q is defined as in [18]), including Harish–Chandra's theorem, which allows us to show that an appropriate quotient of a subcategory gives a semisimple ribbon category. This work generalizes previous work on the foundations of representation theory of quantum groups at roots of unity which applied only to quantizations of the simplest groups, or to certain fractional levels, or only to the projective form of the group. The second half of this paper applies the representation theory to give a sequence of results crucial to applications in topology. In particular, for each compact, simple, simply-connected Lie group we show that at each integer level the quotient category is in fact modular (thus leading to a Topological Quantum Field Theory), we determine when at fractional levels the corresponding category is modular, and we give a quantum version of the Racah formula for the decomposition of the tensor product.

Comments

Electronic version of an article published in Journal of Knot Theory and Its Ramifications, 15, 10, 2006, 1245-1277. DOI: 10.1142/S0218216506005160 © copyright World Scientific Publishing Company. http://www.worldscinet.com/jktr/jktr.shtml

Publication Title

Journal of Knot Theory and Its Ramifications

Published Citation

Sawin, Stephen F. 2006. Quantum groups at roots of unity and modularity. Journal of Knot Theory and its Ramifications 15 (10), 1245-1277.

DOI

10.1142/S0218216506005160

Peer Reviewed

Share

COinS